python matplotlib绘图设置坐标轴刻度、文本

总结matplotlib绘图如何设置坐标轴刻度大小和刻度。

上代码:

from pylab import *
from matplotlib.ticker import MultipleLocator, FormatStrFormatter

xmajorLocator   = MultipleLocator(20) #将x主刻度标签设置为20的倍数
xmajorFormatter = FormatStrFormatter('%1.1f') #设置x轴标签文本的格式
xminorLocator   = MultipleLocator(5) #将x轴次刻度标签设置为5的倍数

ymajorLocator   = MultipleLocator(0.5) #将y轴主刻度标签设置为0.5的倍数
ymajorFormatter = FormatStrFormatter('%1.1f') #设置y轴标签文本的格式
yminorLocator   = MultipleLocator(0.1) #将此y轴次刻度标签设置为0.1的倍数

t = arange(0.0, 100.0, 1)
s = sin(0.1*pi*t)*exp(-t*0.01)

ax = subplot(111) #注意:一般都在ax中设置,不再plot中设置
plot(t,s,'--b*')

#设置主刻度标签的位置,标签文本的格式
ax.xaxis.set_major_locator(xmajorLocator)
ax.xaxis.set_major_formatter(xmajorFormatter)

ax.yaxis.set_major_locator(ymajorLocator)
ax.yaxis.set_major_formatter(ymajorFormatter)

#显示次刻度标签的位置,没有标签文本
ax.xaxis.set_minor_locator(xminorLocator)
ax.yaxis.set_minor_locator(yminorLocator)

ax.xaxis.grid(True, which='major') #x坐标轴的网格使用主刻度
ax.yaxis.grid(True, which='minor') #y坐标轴的网格使用次刻度

show()
绘图如下:

效果图

如果仔细看代码,可以得知,设置坐标轴刻度和文本主要使用了"MultipleLocator"、"FormatStrFormatter"方法。

这两个方法来自matplotlib安装库里面ticker.py文件;"MultipleLocator(Locator)"表示将刻度标签设置为Locator的倍数,"FormatStrFormatter"表示设置标签文本的格式,代码中"%1.1f"表示保留小数点后一位,浮点数显示。

相应的方法还有:

刻度、文本

除了以上方法,还有另外一种方法,那就是使用xticks方法(yticks,x,y表示对应坐标轴),xticks用法可在python cmd下输入以下代码查看:

import matplotlib.pyplot as plt
help(plt.xticks)

代码如下:

import numpy as np
import matplotlib.pyplot as plt

fig,ax = plt.subplots()

x = [1,2,3,4,5]
y = [0,2,5,9,15]


#ax is the axes instance
group_labels = ['a', 'b','c','d','e']

plt.plot(x,y)
plt.xticks(x, group_labels, rotation=0)
plt.grid()
plt.show()

绘图如下:

绘图

上图中使用了"plt.xticks"方法设置x轴文本,标签文本使用group_labels中的内容,因此可以根据需要修改group_labels中的内容。

网上看到的另一种方法,代码如下:

import matplotlib.pyplot as pl
import numpy as np
from matplotlib.ticker import MultipleLocator, FuncFormatter
x = np.arange(0, 4*np.pi, 0.01)
y = np.sin(x)
pl.figure(figsize=(10,6))
pl.plot(x, y,label="$sin(x)$")
ax = pl.gca()

def pi_formatter(x, pos):
    """
    比较罗嗦地将数值转换为以pi/4为单位的刻度文本
    """
    m = np.round(x / (np.pi/4))
    n = 4
    if m%2==0: m, n = m/2, n/2
    if m%2==0: m, n = m/2, n/2
    if m == 0:
        return "0"
    if m == 1 and n == 1:
        return "$\pi$"
    if n == 1:
        return r"$%d \pi$" % m
    if m == 1:
        return r"$\frac{\pi}{%d}$" % n
    return r"$\frac{%d \pi}{%d}$" % (m,n)

# 设置两个坐标轴的范围
pl.ylim(-1.5,1.5)
pl.xlim(0, np.max(x))

# 设置图的底边距
pl.subplots_adjust(bottom = 0.15)

pl.grid() #开启网格

# 主刻度为pi/4
ax.xaxis.set_major_locator( MultipleLocator(np.pi/4) )

# 主刻度文本用pi_formatter函数计算
ax.xaxis.set_major_formatter( FuncFormatter( pi_formatter ) )

# 副刻度为pi/20
ax.xaxis.set_minor_locator( MultipleLocator(np.pi/20) )

# 设置刻度文本的大小
for tick in ax.xaxis.get_major_ticks():
    tick.label1.set_fontsize(16)

pl.legend()
pl.show()
绘图如下:

刻度、文本


特此记录。

  • 27
    点赞
  • 163
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 要将 Matplotlib 坐标轴上的数字改为文字,可以使用 `set_xticklabels` 和 `set_yticklabels` 方法来实现。 首先,我们需要导入 Matplotlib 库并创建一个图形对象。然后,我们可以使用 `set_xticklabels` 方法来更改 x 轴上的刻度数字。该方法接受一个包含要显示在 x 轴上的刻度文本的列表作为参数。类似地,使用 `set_yticklabels` 方法可以更改 y 轴上的刻度数字。 下面是一个示例代码: ```python import matplotlib.pyplot as plt import numpy as np # 创建一些示例数据 x = np.arange(0, 10, 1) y = np.sin(x) # 创建一个图形对象和一个子图 fig, ax = plt.subplots() # 绘制图形 ax.plot(x, y) # 更改 x 轴的刻度数字为文字 ax.set_xticks(np.arange(10)) ax.set_xticklabels(['一', '二', '三', '四', '五', '六', '七', '八', '九', '十']) # 更改 y 轴的刻度数字为文字 ax.set_yticks(np.arange(-1, 1.5, 0.5)) ax.set_yticklabels(['低', '中低', '中', '中高', '高']) # 显示图形 plt.show() ``` 在这个例子中,我们创建了一个简单的正弦函数图形,并使用 `set_xticklabels` 和 `set_yticklabels` 方法将 x 轴和 y 轴上的刻度数字改为文字。x 轴上的刻度数字被更改为 "一" 到 "十",y 轴上的刻度数字被更改为 "低"、"中低"、"中"、"中高"、"高"。 ### 回答2: 在matplotlib中,我们可以通过使用`set_xticklabels()`和`set_yticklabels()`方法来将坐标轴的数字改为文字。 首先,我们需要导入matplotlib库,同时创建一个图形对象和一个子图对象: ```python import matplotlib.pyplot as plt fig, ax = plt.subplots() ``` 接下来,我们可以使用`set_xticklabels()`和`set_yticklabels()`方法来更改坐标轴上的数字为文字。这两个方法接受一个参数,该参数是一个包含要显示的文本的列表。我们可以根据具体需求创建这个列表,然后将其传递给相应的方法。 以x轴为例,我们可以使用以下代码将x轴的数字改为文字: ```python ax.set_xticklabels(['文本1', '文本2', '文本3', '文本4', '文本5']) ``` 同样地,我们也可以通过类似的方式更改y轴上的数字为文字: ```python ax.set_yticklabels(['文本1', '文本2', '文本3', '文本4', '文本5']) ``` 最后,我们要记得将图形对象显示出来: ```python plt.show() ``` 这样,我们就可以将matplotlib坐标轴上的数字改为我们想要显示的文字。 ### 回答3: 在使用matplotlib绘图时,我们可以通过一些方法将坐标轴上的数字改为我们想要的文字。 首先,我们可以使用set_xticklabels()和set_yticklabels()方法来更改x轴和y轴的坐标值。使用这两个方法时,我们需要传入一个包含所需标签的列表,列表的长度应与坐标轴上的刻度数量一致。 另外,我们也可以通过设置坐标轴刻度位置来实现改变坐标轴数字为文字。使用set_xticks()和set_yticks()方法,我们需要传入一个数字列表来指定需要显示的刻度位置。然后,使用set_xticklabels()和set_yticklabels()方法,传入一个包含与刻度位置相对应的文字标签的列表。这样就可以将坐标轴上的数字改为文字。 此外,我们还可以通过设置坐标轴的标签文本来修改坐标轴上的字体。使用set_xlabel()和set_ylabel()方法,我们可以修改x轴和y轴的标签文本为我们想要的文字。 最后,在设置完所有文本和标签之后,使用plt.show()命令来显示绘制的图形。 总的来说,通过以上几种方法,我们可以很方便地将matplotlib坐标轴上的数字改为我们想要的文字,从而更好地展示图形的含义和信息。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值