- 博客(6)
- 收藏
- 关注
原创 书生实战营llamaindex+Internlm2 RAG实践
个人对RAG的理解,并不对大语言模型进行微调,而是为其增加一个知识库,该知识库的的输入可以是word,pdf等格式文字,这些文字通过词嵌入向量模块后被转化为词向量储存,当用户进行提问时,问题也会被转化为词向量,问题向量会在知识向量库中寻找最相关,也就是距离最近的知识向量,然后将原始的用户问题和该知识共同作为提示,输入到大模型中,生成最终问答。然后是在web上对llm进行询问,这个需要ssh连接,参考L0中的Linux课程,否则无法打开local网址。可以看出效果不好,模型并没有学习过xtuner的知识。
2024-07-29 11:36:26 230
原创 书生实战营第三期-8G玩转大模型Demo
使用 LMDeploy 完成了InternLM2-Chat-1.8B 模型的部署,并生成 300 字小故事。实战营ID2483。图文理解的任务由于未在第二期中找到教程文档,等待第三期玩转大模型教程文档更新后补上。过程很简单,跟着教程配置环境即可。
2024-07-24 20:19:23 433
原创 记录自己mmsegment报错ValueError:need at least one array to concatenate。
mmseg:need at least one array to concatenate
2023-11-09 12:33:07 1214 5
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人