题目描述 Description
已知一个 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K —— 表示信封上能够贴 K 张邮票。计算从 1 到 M 的最大连续可贴出的邮资。
例如,假设有 1 分和 3 分的邮票;你最多可以贴 5 张邮票。很容易贴出 1 到 5 分的邮资(用 1 分邮票贴就行了),接下来的邮资也不难:
6 = 3 + 3 7 = 3 + 3 + 1 8 = 3 + 3 + 1 + 1 9 = 3 + 3 + 3 10 = 3 + 3 + 3 + 1 11 = 3 + 3 + 3 + 1 + 1 12 = 3 + 3 + 3 + 3 13 = 3 + 3 + 3 + 3 + 1
然而,使用 5 枚 1 分或者 3 分的邮票根本不可能贴出 14 分的邮资。因此,对于这两种邮票的集合和上限 K=5,答案是 M=13。
小提示:因为14贴不出来,所以最高上限是13而不是15
输入描述 Input Description
第 1 行: 两个整数,K 和 N。K(1 <= K <= 200)是可用的邮票总数。N(1 <= N <= 50)是邮票面值的数量。
第 2 行 .. 文件末: N 个整数,每行 15 个,列出所有的 N 个邮票的面值,每张邮票的面值不超过 10000。
输出描述 Output Description
第 1 行:一个整数,从 1 分开始连续的可用集合中不多于 K 张邮票贴出的邮资数。
样例输入 Sample Input
5 2 1 3
样例输出 Sample Output
13
题解:
题解传送门
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=2000000+100;
const int INF=0x3f3f3f3f;
int d[maxn];
int a[55];
int main()
{
int n,k;
scanf("%d%d",&k,&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
sort(a+1,a+n+1);
int i=0;
d[0]=0;
while(d[i]<=k)
{
i++;
d[i]=INF;
for(int j=1;j<=n&&a[j]<=i;j++)
{
d[i]=min(d[i],d[i-a[j]]+1);
}
}
printf("%d\n",i-1);
}