Student Arseny likes to plan his life for n days ahead. He visits a canteen every day and he has already decided what he will order in each of the following n days. Prices in the canteen do not change and that means Arseny will spend ci rubles during the i-th day.
There are 1-ruble coins and 100-ruble notes in circulation. At this moment, Arseny has m coins and a sufficiently large amount of notes (you can assume that he has an infinite amount of them). Arseny loves modern technologies, so he uses his credit card everywhere except the canteen, but he has to pay in cash in the canteen because it does not accept cards.
Cashier always asks the student to pay change-free. However, it's not always possible, but Arseny tries to minimize the dissatisfaction of the cashier. Cashier's dissatisfaction for each of the days is determined by the total amount of notes and coins in the change. To be precise, if the cashier gives Arseny x notes and coins on the i-th day, his dissatisfaction for this day equals x·wi. Cashier always gives change using as little coins and notes as possible, he always has enough of them to be able to do this.
Arseny wants to pay in such a way that the total dissatisfaction of the cashier for n days would be as small as possible. Help him to find out how he needs to pay in each of the n days!
Note that Arseny always has enough money to pay, because he has an infinite amount of notes. Arseny can use notes and coins he received in change during any of the following days.
The first line contains two integers n and m (1 ≤ n ≤ 105, 0 ≤ m ≤ 109) — the amount of days Arseny planned his actions for and the amount of coins he currently has.
The second line contains a sequence of integers c1, c2, ..., cn (1 ≤ ci ≤ 105) — the amounts of money in rubles which Arseny is going to spend for each of the following days.
The third line contains a sequence of integers w1, w2, ..., wn (1 ≤ wi ≤ 105) — the cashier's dissatisfaction coefficients for each of the following days.
In the first line print one integer — minimum possible total dissatisfaction of the cashier.
Then print n lines, the i-th of then should contain two numbers — the amount of notes and the amount of coins which Arseny should use to pay in the canteen on the i-th day.
Of course, the total amount of money Arseny gives to the casher in any of the days should be no less than the amount of money he has planned to spend. It also shouldn't exceed 106 rubles: Arseny never carries large sums of money with him.
If there are multiple answers, print any of them.
5 42 117 71 150 243 200 1 1 1 1 1
79 1 17 1 0 2 0 2 43 2 0
3 0 100 50 50 1 3 2
150 1 0 1 0 0 50
5 42 117 71 150 243 200 5 4 3 2 1
230 1 17 1 0 1 50 3 0 2 0
题意:
给出n,m表示你初始有m个硬币。有无限多100元的钞票
接下来一行n个数,表示你每天的花费。
然后一行n个数,表示收银员不高兴系数wi
每天你如果刚好给收银员那么多钱而不用找零,那么这一天的不高兴值为0,若要找零x元,那么这天的不高兴值为wi*x。
前面找零得到的硬币可以在后面几天使用。
问,怎样能够使得收银员n天总的不高兴值最小。输出总的不高兴值
并输出n行,每行两个数a,b 表示用a张100元钞票,b个硬币。
题解:
其实这题和前面那个括号匹配的题一样的做法,博客链接
对于任意一天,设x为模100后的部分。如果全交硬币,那么硬币数-x,如果多交1张纸币,硬币数-x+100,总值加上 w[i]*(100-x)。于是先每一天都按交硬币减去需要硬币数,不够的情况 就是减完为负。由于是按时间顺序一天天来的,那么就说明在这一天即其之前的天里,必须有一天是破百元的钱的。选择方法是找其中对总值加的最少的。用set写就是.begin(), 也可以用优先队列重载运算符做就是top的元素。并且又得到100枚硬币后一定可以够交钱,采用这样的贪心策略进行即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const int inf=0x3fffffff;
const ll mod=1000000007;
const int maxn=1e5+100;
struct Ans
{
int a,b;
int w,id;
Ans(int x=0,int y=0,int z=0,int u=0):a(x),b(y),w(z),id(u) {}
bool operator < (const Ans &t)const{
return (100-b)*w>(100-t.b)*t.w;
}
}ans[maxn];
int c[maxn],w[maxn];
priority_queue<Ans> q;
int main()
{
int n;
ll m;
scanf("%d%lld",&n,&m);
rep(i,1,n+1) scanf("%d",&c[i]);
rep(i,1,n+1) scanf("%d",&w[i]);
ll res=0;
rep(i,1,n+1)
{
if(c[i]%100)
{
int p=c[i]%100;
if(m>=p)
{
q.push(Ans(c[i]/100,c[i]%100,w[i],i));
ans[i]=Ans(c[i]/100,c[i]%100);
m-=p;
}
else
{
if(!q.empty())
{
q.push(Ans(c[i]/100,c[i]%100,w[i],i));
m-=c[i]%100;
ans[i]=Ans(c[i]/100,c[i]%100);
while(m<0&&!q.empty())
{
Ans t=q.top();
q.pop();
res+=(100-t.b)*t.w;
m+=100;
ans[t.id].a++,ans[t.id].b=0;
}
}
else
{
ans[i]=Ans(c[i]/100+1,0);
m+=100-c[i]%100;
res+=w[i]*(100-c[i]%100);
}
}
}
else ans[i]=Ans(c[i]/100,0);
}
printf("%lld\n",res);
rep(i,1,n+1) printf("%d %d\n",ans[i].a,ans[i].b);
return 0;
}