以下来源:《算法笔记》第7章 提高篇(1)——数据结构专题(1) P247
题目描述
读入一个只包含 +, -, *, / 的非负整数计算表达式,计算该表达式的值。
输入
测试输入包含若干测试用例,每个测试用例占一行,每行不超过200个字符,整数和运算符之间用一个空格分隔。没有非法表达式。当一行中只有0时输入结束,相应的结果不要输出。
输出
对每个测试用例输出1行,即该表达式的值,精确到小数点后2位。
样例输入
30 / 90 - 26 + 97 - 5 - 6 - 13 / 88 * 6 + 51 / 29 + 79 * 87 + 57 * 92
0
样例输出
12178.21
思路
步骤1:中缀表达式转后缀表达式
- 设立一个操作符栈,用以临时存放操作符;设立一个数组或队列,用以存放后缀表达式。
- 从左至右扫描中缀表达式,如果碰到操作数(操作数可能不止一位,因此需要一位一位读入然后合并),就把操作数加入后缀表达式中。
- 如果碰到操作符op,就将其优先级与操作符栈的栈顶操作符的优先级比较。
- 若op的优先级高于栈顶操作符的优先级,则压入操作符栈。
- 若op的优先级低于或等于栈顶操作符的优先级,则将操作符栈的操作符不断弹出到后缀表达式中,直到op的优先级高于栈顶操作符的优先级。
- 重复上述操作,直到中缀表达式扫描完毕,之后若操作符栈中仍有元素,则将它们依次弹出至后缀表达式中。
- 若出现括号,在步骤3前判断,如果是左括号,就压入操作符栈;如果是右括号,就把操作符里的元素不断弹出到后缀表达式直到碰到左括号。
步骤2:计算后缀表达式
- 从左到右臊面后缀表达式,如果是操作数,就压入栈。
- 如果是操作符,就连续弹出两个操作数(先弹出的是第二操作数,后弹出的是第一操作数),然后进行操作符的操作。
- 生成的新操作数压入栈中。
- 反复直到后缀表达式扫描完毕,这时栈中只会存在一个数,就是最终的答案。
- 注意除法可能导致浮点数,因此操作数类型要设成浮点型。
- 题目中说肯定是合法表达式,因此上面的操作一定能够成功。但如果题目表明可能出现非法表达式,那就要注意每一步使用的对象是否合法。
- 用
string
的erase
方法可以直接把表达式中的空格去掉。
参考代码
#include <cstdio>
#include <iostream>
#include <string>
#include <stack>
#include <queue>
#include <map>
using namespace std;
struct node {
double num; //操作数
char op; //操作符
bool flag; //true表示操作数,false表示操作符
};
string str; //输入字符串
stack<node> s; //操作符栈
queue<node> q; //后缀表达式
map<char, int> op; //操作符优先级
//将中缀表达式转换为后缀表达式
void Change() {
double num;
node temp;
for(int i = 0; i < str.length();) {
if(str[i] >= '0' && str[i] <= '9') { //如果是操作数
temp.flag = true; //标记是操作数
temp.num = str[i++] - '0'; //记录操作数的第一位
while(i < str.length() && str[i] >= '0' && str[i] <= '9') { //如果操作数不止一位
temp.num = temp.num * 10 + (str[i] - '0'); //更新操作数
i++;
}
q.push(temp);
} else { //如果是操作符
temp.flag = false; //标记是操作符
while(!s.empty() && op[str[i]] <= op[s.top().op]) {
//只要操作符栈的栈顶元素比该操作符高,就把操作符栈栈顶元素弹出到后缀表达式中
q.push(s.top());
s.pop();
}
temp.op = str[i];
s.push(temp); //把该操作符压入操作符栈中
i++;
}
}
while(!s.empty()) { //如果操作符栈还有操作符,就把它弹出到后缀表达式中
q.push(s.top());
s.pop();
}
}
//计算后缀表达式
double Cal() {
double temp1, temp2;
node cur, temp;
while(!q.empty()) { //只要后最表达式队列非空
cur = q.front(); //记录队首元素
q.pop();
if(cur.flag == true) //如果是操作数,直接压入栈
s.push(cur);
else { //如果是操作符
temp2 = s.top().num; //弹出第二个操作数
s.pop();
temp1 = s.top().num; //弹出第一个操作数
s.pop();
temp.flag = true; //记录临时操作数(本次计算结果)
if(cur.op == '+') //加法
temp.num = temp1 + temp2;
else if(cur.op == '-') //减法
temp.num = temp1 - temp2;
else if(cur.op == '*') //乘法
temp.num = temp1 * temp2;
else //除法
temp.num = temp1 / temp2;
s.push(temp); //把该操作数压入栈
}
}
return s.top().num; //栈顶元素就是后缀表达式的值
}
int main() {
//设定操作符的优先级
op['+'] = op['-'] = 1;
op['*'] = op['/'] = 2;
//输入并处理表达式
while(getline(cin, str), str != "0") {
for(string::iterator it = str.end(); it != str.begin(); it--) {
if(*it == ' ') //把表达式中的空格全部去掉
str.erase(it);
}
while(!s.empty()) //初始化栈
s.pop();
Change();
printf("%.2f\n", Cal());
}
return 0;
}