C语言 图的领接矩阵与邻接表

本文介绍了图的两种存储结构——领接矩阵和邻接表。领接矩阵通过一个V*V的布尔矩阵表示节点间的连接,适合表示稠密图,但内存需求大。邻接表则使用列表数组存储每个节点的邻居,节省空间,适用于稀疏图。文章提供了无向图的C语言代码实现。
摘要由CSDN通过智能技术生成

领接矩阵

使用一个V*V的布尔矩阵。当结点a与结点b有连接时,定义a行b列的元素值为true,否则为false。
所以我们需要一个V^2大小的数组。需要的内存空间要求很大。

注:以下图片取自:数据结构(七)图

这里写图片描述

代码实现

这里写图片描述

#include <stdio.h>
#include <malloc.h>
#include <memory.h>
#define MAXVEX 100
#define VTYPE char

typedef struct G {
    char vertex[MAXVEX];
    int vNum;

    int arc[MAXVEX][MAXVEX];
    int arcNum;
} MGraph, *MGraphPtr;

int _pos(const MGraphPtr m, const char key) {
    //结点位置
    for (int i = 0; i < m->vNum; i++) {
        if (m->vertex[i] == key)
            return i;
    }
    return -1;
}

void createMetrixGraphy(char *v, int v_length, 
                        int *e, int e_length_1, int e_length_2) {
    MGraphPtr m = (MGraphPtr)malloc(sizeof(MGraph));
    memset(m, 0, sizeof(MGraph));
    for (int i = 0; i < v_length; i++) {
        for (int j = 0; j < v_length; j++) {
            m->arc[i][j] = 0;
        }
    }

    //insert vertex
    for (int i = 0; i<v_length; i++) {
        m->vertex[i] = v[i];
        m->vNum++;
    }

    //insert edge
    for (int i = 0; i < e_length_1; i++) {
        int key_1 = *(e + e_length_2 * i + 0);
        int
C语言中,将无向的连接矩阵形式转换为邻接表是一种常见的数据结构操作,这有助于提高查找和遍历边的效率。以下是将二维数组表示的连接矩阵转换为邻接表的简单示例。假设我们有一个整数二维数组`graph`表示,其中`graph[i][j]`为0或1表示是否存在边(i, j)。 ```c #include <stdio.h> #include <stdlib.h> // 邻接表结点结构体 typedef struct Node { int vertex; // 节点值 struct Node* next; // 指向下一个节点的指针 } Node; // 将连接矩阵转换为邻接表 void matrixToAdjacencyList(int graph[][V], Node** adjList, int V) { for (int i = 0; i < V; ++i) { for (int j = 0; j < V; ++j) { if (graph[i][j]) { // 如果存在边 Node* newNode = (Node*)malloc(sizeof(Node)); // 创建新节点 newNode->vertex = j; // 设置节点值为对应顶点 newNode->next = adjList[i]; // 将新节点添加到邻接列表的链头 adjList[i] = newNode; // 更新邻接表 } } } } // 示例用途:创建并打印邻接表 void printAdjacencyList(Node** adjList, int V) { for (int i = 0; i < V; ++i) { printf("Vertex %d ->", i); Node* temp = adjList[i]; while (temp != NULL) { printf("%d ", temp->vertex); temp = temp->next; } printf("\n"); } } int main() { int V = sizeof(graph) / sizeof(graph[0]); // 的顶点数 Node** adjList = (Node**)malloc(V * sizeof(Node*)); // 初始化邻接表 // 假设已经填充了matrix[],这里仅作示例 // matrixToAdjacencyList(graph, adjList, V); matrixToAdjacencyList(graph, adjList, V); // 转换实际矩阵 printAdjacencyList(adjList, V); // 打印邻接表 return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值