
PyTorch
文章平均质量分 94
计算机学长
深耕软件开发十余年,精通C/C++、C#、Java,Pthon语言以及Linux系统开发,熟练运用Qt框架构建高性能跨平台应用,主导并参与多领域项目研发,涵盖通信、医疗、工业控制,新能源设备及消费电子等领域。
提供android行业定制化设备以及解决方案(工控HMI设备,高性能算力盒子,桌面式/立式人证核验设备,桌面式/壁挂式访客机,人脸识别设备,Android定制化设备,AI播控系统,新能源行业激光控制卡(模切/焊接/清洗/划线/打孔/切卷/切叠)等),联系方式:15019497031(同vx)。
展开
-
解锁大模型调优新姿势:LoRA与P-Tuning探秘
LoRA 和 P-Tuning 作为参数高效微调方法的杰出代表,各自展现出独特的魅力。LoRA 通过引入低秩矩阵,巧妙地降低了可训练参数的数量,在显存优化、计算效率和灵活性方面表现出色,适用于资源受限环境以及对模型推理能力要求较高的任务。原创 2025-04-20 07:00:00 · 1420 阅读 · 0 评论 -
从入门到精通:HuggingFace Transformers库的PyTorch适配指南
HuggingFace Transformers 库是自然语言处理领域中一颗璀璨的明星,它为开发者提供了极为丰富的资源和强大的工具。这个库中包含了大量基于 Transformer 架构的预训练模型,如 BERT、GPT-2、RoBERTa、T5 等。这些预训练模型在大规模的语料库上进行训练,学习到了丰富的语言知识和语义表示,能够很好地捕捉文本中的语义、语法和上下文信息。原创 2025-04-17 08:00:00 · 782 阅读 · 0 评论 -
PyTorch服务化部署:从理论到实战的深度剖析
本文深入探讨了 PyTorch 的服务化部署技术,从模型保存与加载的多种方式,到 TorchServe、Triton 等服务化框架的应用,再到模型转化实战、基于 Flask 的服务搭建,以及服务化部署过程中面临的挑战与应对策略,并结合计算机视觉、自然语言处理、推荐系统等领域的应用场景进行了案例分析。通过这些内容,我们全面了解了将 PyTorch 模型从训练环境部署到生产环境的关键技术和要点。随着深度学习技术的不断发展,PyTorch 服务化部署也将迎来新的机遇和挑战。原创 2025-04-19 07:45:00 · 811 阅读 · 0 评论 -
解锁PyTorch:模型导出与跨平台部署全攻略
特点:ONNX 是一种用于表示神经网络模型的开放标准格式,它旨在提供一个统一的中间表示,使得不同的深度学习框架(如 PyTorch、TensorFlow 等)能够方便地进行模型转换和互操作性。ONNX 支持多种常见的神经网络层和操作符,并且可以记录模型的结构、参数以及输入输出规范。它具有良好的跨平台性,可以在不同的硬件和操作系统上运行。适用场景:当需要在不同深度学习框架之间迁移模型时,ONNX 是首选格式。原创 2025-04-15 14:16:12 · 745 阅读 · 0 评论 -
扒开PyTorch的“性能底牌”:深度剖析性能分析工具
在 PyTorch 的生态系统中,性能分析工具种类繁多,功能各异,从框架内置的 API 工具,到可与之结合使用的外部工具,共同为开发者提供了全面分析模型性能的能力。这些工具就像一套精密的仪器,能从不同角度对模型运行状况进行监测和分析。TensorBoard 是一个强大的可视化工具,在深度学习模型的开发和训练过程中发挥着重要作用。可视化训练过程:它可以实时展示训练和验证的损失、精度等指标的变化情况,以折线图的形式呈现,让开发者直观地了解模型的训练趋势。原创 2025-04-15 11:49:15 · 881 阅读 · 0 评论 -
解锁PyTorch通信优化:让深度学习飞起来
分布式训练,简单来说,就是把原本在单个设备上进行的模型训练任务,拆解成多个子任务,然后分发给多个计算设备(如 GPU、TPU 等)同时进行处理。打个比方,就像建造一座巨大的城堡,如果只靠一个人,那得花费非常多的时间。但要是把建造任务分给很多人,有人负责搬运砖块,有人负责搭建城墙,有人负责装饰城堡,大家并行工作,就能大大加快建造的速度。分布式训练也是如此,通过并行计算,显著提升了训练效率,大幅缩短了训练时间。在大数据集的处理上,分布式训练更是有着无可比拟的优势。原创 2025-04-19 07:00:00 · 776 阅读 · 0 评论 -
解锁PyTorch分布式训练:从原理到实战的技术进阶之路
在深度学习迅猛发展的当下,分布式训练已成为推动模型进步的关键力量,而 PyTorch 分布式训练框架凭借其独特优势,在这一领域占据重要地位。从核心组件与概念来看,torch.distributed模块是基石,进程组和通信后端等概念构建起分布式训练的基本架构,为后续的训练策略实施提供支撑。DataParallel 和 DistributedDataParallel 作为两种重要的训练策略,分别适用于单机多 GPU 和多机多 GPU 场景,满足了不同规模训练任务的需求。原创 2025-04-15 11:08:31 · 618 阅读 · 0 评论 -
解锁PyTorch:从原理到实战,损失函数全解析
PyTorch 是由 Facebook 人工智能研究团队开发的开源深度学习框架,在深度学习领域中占据着重要地位,其受欢迎程度仅次于 TensorFlow。它以 Python 为基础,继承了 Python 简洁易用的特性,使得开发者能够快速上手。PyTorch 采用动态计算图机制,与传统的静态计算图框架不同,其计算图在运行时构建,这赋予了开发者极大的灵活性。在研究和实验阶段,开发者可以方便地修改网络结构和参数,而无需像静态计算图框架那样重新构建整个计算图。原创 2025-04-15 10:50:33 · 901 阅读 · 0 评论 -
解锁PyTorch:训练策略的深度剖析与实战
在深度学习的广袤领域中,模型训练堪称最为关键的环节之一。它是将理论模型转化为实际可用工具的必经之路,涉及利用大量数据和强大计算资源来精细调整模型参数,从而使模型能够准确地捕捉数据中的模式和规律 。在这个复杂而又充满挑战的过程中,PyTorch 作为当下最流行的深度学习框架之一,发挥着举足轻重的作用。原创 2025-04-15 10:32:43 · 949 阅读 · 0 评论 -
解锁PyTorch:打造丝滑数据管道的秘密
在实际应用中,我们常常会遇到数据存储在 CSV 文件中的情况,比如图像数据集,CSV 文件中可能存储了图像的文件名以及对应的标签信息。下面我们详细讲解如何从 CSV 文件加载数据并构建自定义数据集。假设我们有一个annotations_file.csv文件,其内容格式如下:img1.jpg,0img2.jpg,1img3.jpg,0我们的目标是读取这个 CSV 文件,并将其中的图像数据和标签构建成一个 PyTorch 的数据集。首先,我们需要导入必要的库:import os。原创 2025-04-15 09:43:02 · 606 阅读 · 0 评论 -
从0到1:PyTorch模型构建全攻略
在深度学习领域,PyTorch 是一个广受欢迎的开源机器学习库,由 Facebook 的人工智能研究团队开发,如今已成为 Linux 基金会的一部分。自 2016 年发布以来,PyTorch 凭借其简洁易用、灵活高效的特性,在学术界和工业界迅速崛起,成为深度学习开发者的首选工具之一。PyTorch 的发展历程见证了深度学习技术的飞速发展。其前身是 Torch,一个基于 Lua 语言的科学计算框架,在 2002 年首次发布。Torch 虽然功能强大,但由于 Lua 语言的小众性,限制了其在更广泛社区的应用。原创 2025-04-15 09:16:44 · 925 阅读 · 0 评论 -
从0到1掌握PyTorch:张量与自动微分的深度探索
在本文中,我们深入探索了 PyTorch 中的张量操作与自动微分技术。张量作为 PyTorch 的核心数据结构,具有丰富的操作方法,包括创建、形状操作、索引与切片、数学运算以及广播机制等。通过这些操作,我们能够灵活地处理和变换数据,满足深度学习模型在不同阶段对数据的需求。自动微分技术则是深度学习模型训练的关键,它基于动态计算图和链式法则,能够自动高效地计算梯度。原创 2025-04-15 09:08:42 · 517 阅读 · 0 评论