Scipy 显著性检验概述
显著性检验是统计学中用于判断样本数据是否支持某种假设的方法。SciPy 提供了多种显著性检验工具,涵盖参数检验(如 t 检验)和非参数检验(如 Mann-Whitney U 检验)。以下是常见检验方法的代码示例和解释。
单样本 t 检验
单样本 t 检验用于判断样本均值是否与已知的总体均值存在显著差异。假设检验样本数据是否来自均值为 0 的总体:
import numpy as np
from scipy import stats
# 生成样本数据
data = np.random.normal(loc=0.5, scale=1, size=30)
# 执行单样本 t 检验
t_stat, p_value = stats.ttest_1samp(data, popmean=0)
print(f"t-statistic: {t_stat:.4f}, p-value: {p_value:.4f}")
如果 p 值小于显著性水平(如 0.05),则拒绝原假设。
独立样本 t 检验
独立样本 t 检验用于比较两组独立样本的均值是否存在显著差异:
# 生成两组独立样本
group1 = np.random.normal(loc=0, scale=1, size=30)
group2 = np.random.normal(loc=1, scale=1, size=30)
# 执行独立样本 t 检验
t_stat, p_value = stats.ttest_ind(group1, group2)
print(f"t-statistic: {t_stat:.4f}, p-value: {p_value:.4f}")
配对样本 t 检验
配对样本 t 检验用于比较同一组样本在不同条件下的差异:

最低0.47元/天 解锁文章
14万+

被折叠的 条评论
为什么被折叠?



