SciPy显著性检验完全指南

Scipy 显著性检验概述

显著性检验是统计学中用于判断样本数据是否支持某种假设的方法。SciPy 提供了多种显著性检验工具,涵盖参数检验(如 t 检验)和非参数检验(如 Mann-Whitney U 检验)。以下是常见检验方法的代码示例和解释。

单样本 t 检验

单样本 t 检验用于判断样本均值是否与已知的总体均值存在显著差异。假设检验样本数据是否来自均值为 0 的总体:

import numpy as np
from scipy import stats

# 生成样本数据
data = np.random.normal(loc=0.5, scale=1, size=30)

# 执行单样本 t 检验
t_stat, p_value = stats.ttest_1samp(data, popmean=0)
print(f"t-statistic: {t_stat:.4f}, p-value: {p_value:.4f}")

如果 p 值小于显著性水平(如 0.05),则拒绝原假设。

独立样本 t 检验

独立样本 t 检验用于比较两组独立样本的均值是否存在显著差异:

# 生成两组独立样本
group1 = np.random.normal(loc=0, scale=1, size=30)
group2 = np.random.normal(loc=1, scale=1, size=30)

# 执行独立样本 t 检验
t_stat, p_value = stats.ttest_ind(group1, group2)
print(f"t-statistic: {t_stat:.4f}, p-value: {p_value:.4f}")

配对样本 t 检验

配对样本 t 检验用于比较同一组样本在不同条件下的差异:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值