NLP 多模态预训练模型概述
多模态预训练模型通过联合学习文本、图像、音频等多种模态数据,实现跨模态理解和生成任务。这类模型通常基于 Transformer 架构,通过大规模预训练学习通用表征,在下游任务中展现强大性能。典型代表包括 CLIP、FLAVA、OFA 等。
核心技术与架构
多模态预训练模型的核心在于模态对齐和融合。常见方法包括:
- 单流架构:将不同模态输入统一嵌入到共享空间
- 双流架构:分别处理不同模态后通过交叉注意力融合
- 对比学习:通过正负样本对拉近/推远不同模态表征
以下是一个简化的多模态 Transformer 实现:
import torch
import torch.nn as nn
from transformers import BertModel, ViTModel
class MultimodalTransformer(nn.Module):
def __init__(self, text_model="bert-base", image_model="google/vit-base"):
super().__init__()
self.text_encoder = BertModel.from_pretrained(text_model)
self.image_encoder = ViTModel.from_pretrained(image_model)
self.fusion_layer = nn.TransformerEncoderLayer(
d_model=768, nhead=8, dim_feedforward=3072
)
def forward(self, text_input, image_input):
text_emb = s

最低0.47元/天 解锁文章
1561

被折叠的 条评论
为什么被折叠?



