NLP 多模态预训练模型

NLP 多模态预训练模型概述

多模态预训练模型通过联合学习文本、图像、音频等多种模态数据,实现跨模态理解和生成任务。这类模型通常基于 Transformer 架构,通过大规模预训练学习通用表征,在下游任务中展现强大性能。典型代表包括 CLIP、FLAVA、OFA 等。

核心技术与架构

多模态预训练模型的核心在于模态对齐和融合。常见方法包括:

  • 单流架构:将不同模态输入统一嵌入到共享空间
  • 双流架构:分别处理不同模态后通过交叉注意力融合
  • 对比学习:通过正负样本对拉近/推远不同模态表征

以下是一个简化的多模态 Transformer 实现:

import torch
import torch.nn as nn
from transformers import BertModel, ViTModel

class MultimodalTransformer(nn.Module):
    def __init__(self, text_model="bert-base", image_model="google/vit-base"):
        super().__init__()
        self.text_encoder = BertModel.from_pretrained(text_model)
        self.image_encoder = ViTModel.from_pretrained(image_model)
        self.fusion_layer = nn.TransformerEncoderLayer(
            d_model=768, nhead=8, dim_feedforward=3072
        )
        
    def forward(self, text_input, image_input):
        text_emb = s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值