LeetCode 63

本文探讨了LeetCode上的两个路径问题,分别使用动态规划(DP)和深度优先搜索(DFS)结合回溯的方法解决。首先,介绍了如何通过DP解决63题,即在存在障碍物的情况下寻找唯一路径的数量;其次,详细解析了980题的解法,该题要求在包含起点、终点和多个空地的网格中寻找所有可能的路径。
摘要由CSDN通过智能技术生成

LeetCode 63

通过dp来解,每个格子进入的方法只有从他的左边和上边,那么所有的方法就是左边和上边方法的和。如果有障碍,那么就是0. 把数组扩展一行一列,这样容易来处理,省去写special case。

    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        if not obstacleGrid: return 0
        m = len(obstacleGrid)
        n = len(obstacleGrid[0])

        if obstacleGrid[0][0] == 1: return 0

        dp = [[0]* (n+1) for i in range(0, m+1)]
        dp[1][1] = 1

        for i in range(1, m+1) :
            for j in range(1, n+1) :
                if (obstacleGrid[i-1][j-1] == 0):
                    dp[i][j] += dp[i-1][j] + dp[i][j-1]

        return dp[m][n]     

这个题目的扩展,980题:

使用dfs 然后 backtracking的方法

    def uniquePathsIII(self, grid: List[List[int]]) -> int:
        if grid == None: return 0
        rc = len(grid)
        cc = len(grid[0])

        numberOfSpaces = 0
        for i in range(0, rc):
            for j in range(0, cc):                
                if (grid[i][j] == 1):
                    startR = i
                    startC = j
                elif grid[i][j] == 0:
                    numberOfSpaces +=1

        numberOfPaths = 0

        directions = [[1,0],[-1,0], [0,1],[0,-1]]
        def dfs(grid: List[List[int]], r: int, c:int, numberOfVisited: int):
            nonlocal directions
            nonlocal numberOfPaths
            nonlocal numberOfSpaces
            
            if (r<0) or (c < 0) or (r >= rc) or (c >= cc) or grid[r][c] == -1:
                return
            elif grid[r][c] == 2 and numberOfVisited > numberOfSpaces:
                numberOfPaths +=1
            
            tmp = grid[r][c]
            grid[r][c] = -1
            for d in directions:
                dfs(grid, r+d[0], c+d[1], numberOfVisited + 1)
            grid[r][c] = tmp
            
        dfs(grid, startR, startC, 0)

        return numberOfPaths
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值