自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(148)
  • 收藏
  • 关注

原创 react-wavesurfer录音组件1:从需求到组件一次说清楚

本文分享了一个React录音转文字组件的实现方案。该组件具备录音、音频可视化、播放控制和语音转文字等核心功能,采用响应式设计并支持浏览器兼容性检查。技术实现上,组件采用TypeScript编写,通过MediaRecorder API实现录音功能,WaveSurfer实现波形可视化,并集成ASR服务进行语音转文字。组件设计为受控模式,支持与父组件状态同步,包含完善的错误处理和资源管理。实现步骤包括搭建基础框架、实现录音功能、音频处理和转文字功能集成,最终形成一个可复用的React组件解决方案。

2026-01-15 16:31:06 753

原创 react-wavesurfer录音组件3:全部代码

纯代码分享

2026-01-15 16:18:55 23

原创 react-wavesurfer录音组件2:前端如何处理后端返回的仅Blob字段

本文介绍了前端如何处理后端仅返回Blob音频数据的解决方案。提出了两种主要方案:在父组件中转换Blob为AudioData对象,或修改AudioRecorder组件使其直接处理Blob。详细说明了如何定义TypeScript接口、处理不同数据格式转换(包括Blob、Base64等),并提供了API响应示例和代码实现。同时给出了组件修改建议,使AudioRecorder能够兼容处理纯Blob输入,保持组件功能的完整性。

2026-01-15 16:18:02 402

原创 PyTorch神经网络构建完全指南:从零到一的深度学习实战

本文是PyTorch神经网络构建的实战指南,涵盖从基础张量操作到复杂网络架构设计的完整知识体系。主要内容包括: PyTorch张量核心概念:深入解析张量的维度、数据类型和设备特性,提供内存管理和性能优化技巧 nn.Module模块化设计:详细讲解神经网络基础构建块,包括: 网络初始化与权重管理 前向传播实现 参数统计方法 实战代码示例:通过BasicNeuralNetwork类展示完整的三层全连接网络实现,包含: 层定义(Linear、ReLU、Dropout、BatchNorm) 权重初始化(Xavier

2026-01-09 14:08:48 1098

原创 PyTorch数据集与数据加载器终极指南:从数据准备到高效加载的完整实战教程

数据是深度学习的基石,而**PyTorch的数据集(Dataset)和数据加载器(DataLoader)** 是构建高效数据管道的核心组件。无论你是处理图像分类、自然语言处理,还是复杂的多模态任务,掌握PyTorch的数据处理工具都是模型成功的关键。本教程将**深入解析PyTorch数据处理的每一个细节**,从最基础的Dataset类构建,到高级的数据加载优化技巧。我们将不仅介绍API的使用方法,更重要的是分享**实战中的最佳实践和常见陷阱**,帮助你构建出既高效又健壮的数据管道。

2026-01-09 10:59:27 459

原创 PyTorch张量终极指南:从零基础到高效实战的全面教程

这是一份**全网最全、最实用的PyTorch张量API权威指南**!无论你是刚刚踏入深度学习领域的新手,还是正在寻求进阶优化技巧的资深开发者,这份指南都将成为你日常开发中的**必备参考手册**。本教程**系统性地覆盖了PyTorch张量的所有核心操作**,从最基础的张量创建、属性访问,到进阶的索引切片、数学运算,再到实战中的内存优化、梯度管理、批量处理等高级技巧。每一部分都配有**清晰易懂的代码示例**和**实战应用场景**,让你不仅能理解API的使用方法,更能掌握如何在真实项目中高效运用。

2026-01-08 15:26:07 170

原创 大模型预训练与微调:从理论到实践的初学者完全指南

保持好奇心:大模型技术发展迅速,每天都有新进展动手实践:看到的技术都要自己实现一遍参与开源:贡献代码,参与讨论,向他人学习分享知识:教别人是最好的学习方式保持耐心:掌握大模型技术需要时间和坚持记住:每个人都是从零开始的。按照这个路线,一步一个脚印,你一定能掌握大模型的预训练和微调技术。遇到困难时,回到基础,多实践,多交流。学习之旅虽然漫长,但收获的知识和技能将是非常宝贵的。开始你的大模型学习之旅吧!🚀。

2026-01-08 11:31:09 912

原创 基于SWIFT框架的预训练微调和推理实战指南之完整实战项目

本文从大模型的基础原理出发,通过SWIFT框架详细讲解了预训练、微调、推理和采样的全流程。从理论到实践,从单机到分布式,从训练到部署,提供了完整的学习路径和实践代码。理解核心原理:掌握Transformer、注意力机制、LoRA等关键技术熟练使用工具:掌握SWIFT、Transformers、DeepSpeed等框架注重实践优化:学会性能调优、内存管理、故障排查构建完整项目:从数据处理到模型部署的全链路实践大模型技术日新月异,保持持续学习、动手实践、参与社区是快速成长的关键。

2026-01-07 17:21:27 323

原创 基于SWIFT框架的预训练微调和推理实战指南之代码详解

现代大型语言模型(LLM)建立在深度学习、自然语言处理和分布式计算的交叉领域。核心架构Transformer的自注意力机制实现了对长序列数据的并行处理,为处理复杂语言任务奠定了基础。

2026-01-07 17:18:30 244

原创 AutoPrompt如何实现自动化生成与优化的方案

AutoPrompt并不适用于所有的提示词场景,**以“识别汽车的朝向(正前面,正后面,侧面;左前侧面,右前侧面,右后侧面;左后侧面)”为实例探讨如何实现autoPrompt**

2025-12-12 11:46:22 848

原创 CoCoOp公式原理详细解读

CoCoOp通过引入动态提示机制改进了传统的静态提示方法CoOp。其核心创新是使用轻量级Meta-Net根据输入图像生成条件令牌π,与基础上下文向量vₘ相加得到动态提示vₘ(x)=vₘ+π。这种设计既保留了通用知识又实现了个性化调整,有效解决了过拟合问题并提升了跨领域泛化能力。相比CoOp的固定提示,CoCoOp能针对不同图像自动调整提示内容,在保持参数高效的同时显著增强了模型适应性,特别适用于交通场景等复杂多变的任务环境。

2025-12-12 11:44:32 1102

原创 CoOp上下文优化公式原理详细解析

CoOp(Context Optimization)是一种改进CLIP模型提示工程的方法,通过可学习向量替代手工设计的文本模板。其核心公式将类别名称与M个可学习的上下文向量拼接后输入CLIP文本编码器,通过交叉熵损失优化这些向量。相比传统CLIP的固定提示,CoOp实现了数据驱动的连续空间优化,能自动适应特定任务需求。训练过程中仅更新上下文向量,保持CLIP主干网络冻结,使模型在保持零样本能力的同时提升分类性能。该方法通过梯度下降自动寻找最优提示表示,避免了人工设计模板的繁琐和不确定性。

2025-12-11 11:44:26 895

原创 CLIP 对比语言-图像预训练公式原理详解

对比学习:通过正负样本对比学习特征表示跨模态对齐:将图像和文本映射到同一空间零样本泛化:利用语言语义实现未见类别的识别可扩展性:无需重新训练即可识别新概念这种范式不仅推动了多模态研究,也为人工智能的通用性提供了新思路——通过自然语言这种灵活、丰富的监督信号,模型可以学习更通用、更可组合的知识表示。

2025-12-11 11:34:35 993

原创 CoCoOp:让视觉大模型提示“活”起来——从静态过拟合到动态泛化的技术跃迁

本文探讨了视觉-语言模型微调中的提示学习技术,重点分析了CoOp方法的局限性及其改进方案CoCoOp。CoOp采用静态提示易导致过拟合,泛化能力不足;而CoCoOp创新性地引入动态提示机制,通过元网络生成实例相关的条件令牌,使提示能根据输入图像内容动态调整。实验表明,CoCoOp在保持基类性能的同时显著提升了新类识别准确率,其"实例条件化"思想为提示学习提供了新范式。该技术平衡了模型适应性与泛化能力,为视觉-语言模型的高效微调提供了有效解决方案。

2025-12-10 17:10:16 749

原创 CoOp:Visual-Language Model从静态模板到动态学习新范式

且追求在已知类别上的。

2025-12-10 15:12:07 1140

原创 论文翻译:CONSISTENCY-GUIDED PROMPT LEARNING FOR VISION-LANGUAGE MODELS

Shuvendu Roy, Ali Etemad加拿大女王大学摘要我们提出了一种新的视觉语言模型微调方法——一致性引导的提示学习(CoPrompt)。我们的方法旨在提高大型基础模型在小样本设置下对下游任务进行微调时的泛化能力。CoPrompt的核心思想是在可训练模型与预训练模型的预测之间施加一致性约束,以防止对下游任务的过拟合。此外,我们在一致性约束中引入了以下两个组件以进一步提升性能:对两个扰动输入强制一致性,以及结合提示学习和适配器这两种主流的微调范式。对扰动输入施加一致性约束可以进一步正则化一致性

2025-12-09 19:50:24 557

原创 论文解析:CONSISTENCY-GUIDED PROMPT LEARNING FOR VISION-LANGUAGE MODELS

一个学生(可学习模型)在学新任务时,身边坐着一位博学的老师(冻结的预训练模型)。学生可以使用高级文具(提示)和脑力辅助器(适配器)来学习。老师的要求是:1)你思考问题的方向要跟我大体一致(

2025-12-09 19:44:50 870

原创 大佬带你手撕Transformer核心组件:Embedding、Attention与LayerNorm

作用:将词汇索引转换为密集向量表示2、PositionalEmbedding(位置嵌入)作用:为模型提供序列位置信息📌 位置编码特点:- **绝对位置感知**:每个位置有唯一编码- **相对位置可计算**:通过三角函数公式计算相对位置- **长度可扩展**:支持比训练时更长的序列3、TransformerEmbedding(完整嵌入层)作用:组合词嵌入和位置嵌入二、MultiHeadAttention(多头注意力机制)1、class MultiHeadAttention初始化多头

2025-12-06 17:17:26 910

原创 Transformer架构原理完全解析:全网最完整专业细致

🚀 Transformer的三大创新:自注意力机制:完全替代RNN,解决长距离依赖问题位置编码:弥补注意力机制缺失的位置信息多头注意力:从多个角度捕捉不同类型的语义关系。

2025-12-06 17:09:57 2075

原创 Prompt Engineering完全指南:从基础到高阶技术实战

明确目标:清晰定义任务成功标准迭代设计:从简单Prompt开始,逐步增加复杂度多样测试:使用不同类别和难度的测试用例量化评估:建立可量化的评估指标持续优化:基于反馈持续改进Prompt设计Prompt工程既是科学也是艺术。随着大型语言模型的不断发展,精心设计的Prompt将成为释放模型潜力的关键。本文系统性地介绍了从基础到高级的各种Prompt技术,建议读者结合实际应用场景,灵活组合这些技术,并通过持续测试和迭代,找到最适合自己任务的Prompt策略。

2025-12-03 10:29:29 489

原创 Prompt Engineering 完全指南:从基础到高阶技术深度解析

自动提示工程是一种元优化技术,其核心思想是“让大型语言模型为特定任务自动寻找最优提示”。与传统的人工试错方法相比,APE通过系统的生成-评估循环,能够发现人类难以直观设计的高效提示模式。始终从简单开始:先尝试零样本或简单提示迭代式优化:基于评估结果逐步改进组合使用技术:根据任务特点混合多种技术建立评估体系:量化评估每次改进的效果文档化经验:建立组织的Prompt知识库。

2025-12-03 10:28:35 886

原创 爬虫实战|Scrapy+Selenium 批量爬取汽车之家海量车型外观图 之 全部代码

按照我们之前两篇的步骤,相信你已经构建了完整了项目,顺利的话已经开始爬取数据了,这一篇重点在于给出所有详细的代码✅ 正确的Scrapy项目创建和运行流程:2. 进入项目根目录(关键步骤!)3. 新建爬虫文件(必须在项目根目录下运行)4. 运行爬虫文件(必须在项目根目录下运行)二、项目结构项目构建完成后,目录结构如下(标注了每个文件/目录的作用和创建方式):三、项目源码1、docs文件夹内文件1. car_ids.json这个文件比较特殊,是从汽车之家网站的是接口复制过来的,具体步骤见

2025-12-02 09:56:34 880

原创 爬虫实战|Scrapy+Selenium 批量爬取汽车之家海量车型外观图(附完整源码)二

本文介绍了一个使用Scrapy+Selenium批量爬取汽车之家车型外观图的爬虫项目。项目通过Scrapy框架进行高效调度,结合Selenium解决动态页面加载问题,实现了对汽车之家全车型外观图的自动化采集。核心功能包括:1) 定义数据模型存储车型信息;2) 使用Selenium进行动态交互(点击外观标签、展开图片);3) 支持批量爬取和断点续传;4) 优化反爬策略(UA伪装、无头模式)。该项目可直接用于汽车数据分析、AI训练等场景,提供了完整的代码解析和实现细节。

2025-11-29 10:06:44 1961

原创 爬虫实战|Scrapy+Selenium 批量爬取汽车之家海量车型外观图(附完整源码)一

本文介绍了一个使用Scrapy+Selenium爬取汽车之家车型外观图的爬虫项目。主要内容包括: 项目目标:批量爬取汽车之家指定车型的所有外观图,实现自动切换标签、展开隐藏图片、处理懒加载、高清图转换等功能。 技术方案:结合Scrapy的高效调度和Selenium的动态交互能力,解决JS渲染问题。 实现细节: 定义结构化数据模型 配置Selenium浏览器环境 实现批量爬取和断点续传 处理动态加载和反爬机制 项目特点: 支持车型分类存储 自动记录下载状态 优化爬取性能 该项目适用于汽车数据分析、设计参考和A

2025-11-28 16:02:41 1386

原创 3Blue1Brown视频“直观解释注意力机制,Transformer的核心”中文字幕完整版

本文详细解析了Transformer模型中的注意力机制及其工作原理。文章首先回顾了Token嵌入向量的概念,指出初始嵌入不考虑上下文,需要通过后续步骤传递上下文信息。注意力机制通过计算查询向量(Query)和键向量(Key)的点积,衡量单词间的相关性,并使用Softmax归一化生成权重分布。这一过程使模型能够动态调整词向量,融入上下文信息,从而更准确地理解词义。文章通过具体示例(如"fluffy"和"creature"的交互)生动展示了注意力如何捕捉单词间的关联性,最

2025-11-05 10:37:06 309

原创 论文解析:BAL: Balancing Diversity and Novelty for Active Learning

BAL论文提出了一种平衡多样性和新颖性的主动学习方法,通过创新的簇距离差(CDD)度量选择样本。CDD结合样本到未标注簇中心的距离(多样性)和到最近已标注簇中心的距离(新颖性)。实验表明,在多个数据集上BAL优于现有方法,特别是在小/大标注预算下均表现稳定。该方法解决了传统主动学习中信息冗余和多样性不足的问题,通过优先选择代表新类别且典型性高的样本,有效提升模型性能。

2025-10-14 10:06:41 807

原创 从0到1讲解大模型关键步骤(二)句法分析

本文系统解析了句法分析的6种主流模型: N-gram模型:基于统计的简单语言模型,适合基础任务但无法处理长依赖 文本向量化:包括One-hot、TF-IDF和词嵌入等方法,实现文本数值化表示 RNN:循环结构处理序列数据,但存在梯度消失问题 LSTM:通过门控机制解决长依赖问题,计算复杂度较高 GRU:简化版LSTM,训练速度快但性能略低 CNN:适合文本分类任务,并行计算效率高 文章详细对比了各模型的原理、结构、适用场景及优缺点,为句法分析任务提供了全面的技术选型参考。

2025-10-13 11:29:00 490

原创 从0到1讲解大模型中的关键步骤(一)分词、词性标注、命名实体识别

本文系统介绍了自然语言处理的三大基础技术:分词、词性标注和命名实体识别。在分词部分,详细讲解了最大正向匹配、逆向匹配等算法原理,并提供了中英文分词的代码实现;词性标注部分对比了规则、统计和深度学习方法,展示了如何分析词性模式;命名实体识别部分则介绍了从规则到深度学习的多种实现方法。全文通过理论讲解与代码示例相结合的方式,帮助读者全面理解NLP基础技术的工作原理、应用场景及其优缺点,为后续深入学习自然语言处理奠定了坚实基础。

2025-10-13 10:06:23 534

原创 论文解析:VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning

VL-Cogito 是一个在 **渐进式课程强化学习框架 (PCuRL)** 指导下训练的多模态大模型,其核心设计理念是模仿人类 **“循序渐进”** 的学习过程。下面我将为你详细解析它的底层原理、创新点、实际效果、应用场景以及优劣势。

2025-10-10 15:41:09 646

原创 大模型训练过程中主动学习和课程学习的全面对比

特性主动学习课程学习核心目标降低标注成本,选择信息量最大的样本优化学习轨迹,加速收敛、提升泛化,从易到难学习数据需求需要一个大的未标注数据池需要一个已标注的(或可自监督评估的)数据集关键操作查询-标注-更新的循环设计难度度量和调度策略与模型关系高度依赖当前模型状态来选择样本可以依赖模型状态,也可以完全独立于模型主要挑战标注延迟、冷启动、计算成本、在大模型中迭代成本高难度定义的主观性、调度策略的超参数敏感、可能陷入局部最优在实际的大模型训练中,这两种思想常常被结合使用。在预训练阶段,可以使用。

2025-10-09 16:01:08 371

原创 主动学习和数据蒸馏在整个多模态大模型流程中的定位与价值

主动学习是一个。

2025-09-30 17:11:21 876

原创 七类流行的大模型数据蒸馏模式优势横向对比

本文系统对比了七类大模型数据蒸馏方法,将其分为三类:模型导向(DISTILLM、LLaVA-KD等)、数据导向(NCFM、ROME等)和架构导向(LLaVA-MoD)。模型导向方法通过优化损失函数或训练流程实现知识迁移;数据导向方法聚焦合成高质量小数据集;架构导向方法则利用MoE等结构提升效率。各类方法在保真度、鲁棒性、计算效率等方面各有侧重,推动大模型蒸馏向精细化、理论化发展。实际应用需根据目标(直接部署模型或获取数据集)选择合适方法。

2025-09-30 10:43:52 619

原创 解读大模型轻量化与高效蒸馏:MST-Distill

《MST-Distill:跨模态知识蒸馏的专业化教师混合框架》提出创新方法解决AI模型跨模态学习中的教师选择与知识漂移问题。该框架通过三阶段实现:协作初始化促进模型协同学习,MaskNet模块过滤适配知识,GateNet动态选择最优教师组合。实验表明,相比传统方法性能提升3-8%,在自动驾驶、医疗诊断等领域具有应用潜力。核心贡献在于建立了多教师动态辅导新范式,有效解决了知识传递中的注意力不匹配问题。

2025-09-29 15:57:02 563

原创 深入解读通过模型蒸馏的数据增强:ERNIE数据蒸馏系统

模型蒸馏进行数据增强是一种将大模型知识迁移到小模型的高效技术。通过教师模型为无标注数据生成伪标签,结合原始标注数据训练学生模型,实现性能接近但预测速度显著提升。百度ERNIE系统采用添加噪声、同词性替换等数据增强策略,支持离线和在线蒸馏模式。该技术已成功应用于医学图像诊断和隐私保护等领域,有效解决数据稀缺和领域适应问题。

2025-09-26 10:21:40 950

原创 深入解读大模型数据集蒸馏最新进展NCFM 和 ROME

摘要: 数据集蒸馏技术通过将海量数据压缩为少量合成样本,使模型获得接近全量数据训练的性能。2025年的前沿方法NCFM和ROME分别解决了效率与鲁棒性问题。NCFM采用极小极大优化框架,利用神经特征函数匹配分布,显著降低资源消耗(显存减少300倍);ROME则首次引入信息瓶颈理论,提升模型抗攻击能力(鲁棒性指标提升至103.09%)。当前主流技术分为元学习、分布匹配和轨迹匹配三类,面临计算成本高、扩展性差等挑战。实践建议从CIFAR等小数据集入手,关注合成数据在跨架构模型上的泛化表现,未来方向包括大规模扩展

2025-09-25 11:16:02 954

原创 全面解读大模型数据蒸馏---基于架构优化的蒸馏LLaVA-MoD

全面解读大模型数据蒸馏---基于架构优化的蒸馏参考论文:LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation论文地址:https://arxiv.org/pdf/2408.15881github代码地址:https://github.com/shufangxun/LLaVA-MoD这类方法通过优化学生模型的结构来提高知识蒸馏效率,其中最引人注目的是引入稀疏专家混合(MoE)架构。LLaVA-MoD是这一方向的代表工作

2025-09-24 16:42:34 736

原创 多模态大模型数据蒸馏技术全面调研:方法与趋势

摘要 本文系统调研了多模态大模型数据蒸馏的主流方法,首先介绍了多模态模型和知识蒸馏的基础概念,为零基础研究者建立知识框架。随后详细阐述了文献调研方法,包括学术数据库检索策略、关键词组合技巧和严格的文献筛选标准。核心部分分析了四种主流蒸馏技术:基于架构优化的MoE蒸馏、跨模态对齐的语义解耦蒸馏、轻量化高效蒸馏以及特定任务定制蒸馏,通过性能参数对比表直观展示各方法优劣。最后提供了实践指导,包括数据准备中的主动学习策略与模态配比优化,模型训练中的分阶段蒸馏技巧,以及评估复现的建议步骤,为研究者提供从理论到实践的全

2025-09-22 15:47:46 835

原创 InnoDB 引擎深潜指南---从逻辑结构到 MVCC 原理,带源码级案例与性能要点

本文系统解析了InnoDB存储引擎的核心原理与优化实践。内容涵盖逻辑存储结构(表空间→段→区→页→行)、整体架构(内存+磁盘+后台线程)、事务实现机制(RedoLog/UndoLog)、MVCC实现细节(隐藏字段/版本链/ReadView)、RC与RR隔离级别差异,并给出8条生产注意事项和典型场景案例分析。重点指出:InnoDB通过RedoLog保证崩溃恢复,UndoLog+MVCC确保一致性,行锁提升并发;合理使用索引、控制事务时长、优化锁策略是保障MySQL性能的关键。

2025-09-19 16:57:09 643

原创 MySQL 锁机制全景解析---源码级案例与避坑指南

MySQL锁机制是保障数据一致性与并发性能的关键。文章系统梳理了全局锁、表级锁(MDL锁、意向锁)和行级锁(记录锁、间隙锁、Next-Key锁)的分类及适用场景,通过真实案例演示了锁的工作原理和常见问题。重点指出:索引查询避免表锁、RR隔离级别下间隙锁防幻读、MDL锁导致DDL阻塞等核心要点,并给出9条最佳实践,包括监控命令、死锁处理等。最终强调合理使用锁机制能在保证数据一致性的同时,将并发性能提升至毫秒级响应。

2025-09-19 11:12:10 1145

原创 MySQL 触发器深度指南---从原理、分类到实战避坑,一篇掌握 Trigger 的全部姿势

摘要:触发器是绑定在表上的自动执行SQL代码,核心场景包括审计日志、级联更新等。文章详细介绍了6大注意事项(性能、递归陷阱等)、分类(BEFORE/AFTER)、代码示例(审计日志、软删除),以及与存储过程、外键的对比。最后强调触发器适合透明任务,但需警惕性能影响,建议评估数据量后再上线。(150字)

2025-09-18 11:30:33 485

基金详情页持仓详情页rn项目

基金详情页持仓详情页rn项目

2024-09-04

lemon rn project

lemon rn project

2024-09-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除