ID3决策树也是决策树的一种,其作用在于根据已有数据训练决策树,并通过决策树的分支实现对新数据的分类,是一种有监督的学习。
在生成决策树的过程中,ID3使用的信息熵增益对子节点类别进行确定。根据信息熵越是有序的数据熵值越低,信息熵增益越大表示当前属性对于数据的分类结果越好。
信息熵计算公式:
Info=−∑i=1nP(xi)∗log2P(xi)
信息增益:
Gain(A)=Info(D)−InfoA(D)
where
InfoAD=