幂次方 (C++)

题目描述:

任何一个正整数都可以用2的幂次方表示。例如137=2^{7}+2^{3}+2^{0}

同时约定方次用括号来表示,即a^{b}可表示为a(b)。

由此可知,137可表示为2(7)+2(3)+2(0)

进一步:

7=2^{2}+2+2^{0}(2^{1}用2表示),并且3=2+2^{0}

所以最后137可表示为2(2(2)+2+2(0))+2(2+2(0))+2(0)。

又如1315=2^{10}+2^{8}+2^{5} +2+1

所以1315最后可表示为2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)。

输入格式:

一行一个正整数n。

输出格式:

符合约定的n的0, 2表示(在表示中不能有空格)。

样例 #1

样例输入 #1

1315

样例输出 #1

2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)

提示

【数据范围】

对于100%的数据,1≤n≤2×10^{4}


分析:

这道题其实就是对一个数用2的幂进行分解,既然说了数字的范围时1-->20000,那么对其列个表格就行了

2^{0}2^{1}2^{2}2^{3}2^{4}2^{5}2^{6}2^{7}
1248163264128
2^{8}2^{9}2^{10}2^{11}2^{12}2^{13}2^{14}...
25610242048419681921638432768...

我们将所有可以用到的2的幂列举出来了,然后就是按递归的方法去减就行了,但要注意2()的括号里面的数能分解的也要分解,那么就可以做了。


你们最爱的代码:

#include <bits/stdc++.h>
using namespace std;
int a[16];
void f(int x)
{
	for(int i=15;i>=0;i--)//倒着找最大最接近x的
	{
		if(x>=a[i])//如果2的i次方小于或等于
		{
			x-=a[i];//减去2的i次方
			if(i==0) printf("2(0)");
			else if(i==1) printf("2");//两个特判
			else
			{
				printf("2(");
				f(i);
				printf(")");
			}
			if(x>0) cout<<"+";//输出条件
		}
	}
}
int main()
{
	a[0]=1;
	for(int i=1;i<=15;i++) a[i]=a[i-1]*2;//将2的i次方存进数组里
	int n;
	cin>>n;
	f(n);//递归开始
    return 0;
}

看完了,你学费了吗?

验证方法:洛谷P1010 [NOIP1998 普及组] 幂次方直接AC

有问题欢迎在评论区讨论!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值