1.1截断误差与舍入误差
误差 | 类型 |
固有误差 | 模型误差 |
测量误差 | |
计算误差 | 截断误差 |
舍入误差 |
数值分析中主要讨论的是计算误差,包括截断误差与舍入误差。
(1)舍入误差:由于数字计算机不能准确地表示某些量引起。
简单的理解就是,计算机对于浮点数存储的精度有限造成的误差。假设将计算机表示浮点数的能力限制为表示两位有效数字。则只能表示为
。由此产生的相对误差为
增加有效数的位数可以改善近似效果,但计算机在存储时舍入误差总是存在的。
(2)截断误差:是指用于近似替代产生的误差。
例如利用泰勒公式:无穷级数按照精度要求“截断”对sinx进行近似。当N=3时:
,由泰勒公式余项可计算截断误差为:
1.2数值计算中需要注意的误差问题
(1)避免相近的数作减法运算:
两个相近的数相减时候相对误差将显著扩大
避免方法:①增加有效数字、②化为等价形式
等价形式:
例如:保留四位有效数字计算1-cos0.1
1-cos0.1=1-0.9950=0.0050
2sin2(0.05)=2*0.04498*0.04498=0.004496
(2)避免分式中分母的绝对值远小于分子的绝对值
当分母的绝对值远小于分子的绝对值时。分子中的误差将使整个分式的绝对误差显著扩大。解线性方程组的主元法就是针对此种情况设计的。
参考书籍:
《应用数值分析》、《Numerical Analysis》、《Applied Numerical Methods with MATLAB》