【数值分析学习笔记】——1、数值分析中的误差

本文深入探讨了数值分析中的两种主要误差——截断误差与舍入误差,并提供了避免这些误差扩大的实用方法。通过实例说明了如何减少计算过程中的误差累积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.1截断误差与舍入误差

误差

类型

固有误差

模型误差

测量误差

计算误差

截断误差

舍入误差

数值分析中主要讨论的是计算误差,包括截断误差与舍入误差。

(1)舍入误差:由于数字计算机不能准确地表示某些量引起。

         简单的理解就是,计算机对于浮点数存储的精度有限造成的误差。假设将计算机表示浮点数的能力限制为表示两位有效数字。则只能表示为。由此产生的相对误差为\frac{​{\left| {0.015625 - 0.016} \right|}}{​{0.015625}} = 0.024增加有效数的位数可以改善近似效果,但计算机在存储时舍入误差总是存在的。

(2)截断误差:是指用于近似替代产生的误差。

例如利用泰勒公式:无穷级数按照精度要求“截断”对sinx进行近似。当N=3时:,由泰勒公式余项可计算截断误差为:

 1.2数值计算中需要注意的误差问题

 (1)避免相近的数作减法运算:

两个相近的数相减时候相对误差将显著扩大

避免方法:①增加有效数字、②化为等价形式

等价形式:

例如:保留四位有效数字计算1-cos0.1

1-cos0.1=1-0.9950=0.0050

2sin2(0.05)=2*0.04498*0.04498=0.004496

(2)避免分式中分母的绝对值远小于分子的绝对值

当分母的绝对值远小于分子的绝对值时。分子中的误差将使整个分式的绝对误差显著扩大。解线性方程组的主元法就是针对此种情况设计的。

 

 

参考书籍:

《应用数值分析》、《Numerical Analysis》、《Applied Numerical Methods with MATLAB》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值