int * best, * prev, i, j, max = 0 ;
best = ( int * ) malloc ( sizeof ( int ) * N );
prev = ( int * ) malloc ( sizeof ( int ) * N );
for ( i = 0 ; i < N; i ++ ) best[i] = 1 , prev[i] = i;
for ( i = 1 ; i < N; i ++ )
for ( j = 0 ; j < i; j ++ )
if ( a[i] > a[j] && best[i] < best[j] + 1 )
best[i] = best[j] + 1 , prev[i] = j; // prev[] is for backtracking the subsequence
for ( i = 0 ; i < N; i ++ )
if ( max < best[i] )
max = best[i];
free( best );
free( prev );
return max;
}
// Sample usage.
int main(){
int b[] = { 1 , 3 , 2 , 4 , 3 , 5 , 4 , 6 };
// the longest increasing subsequence = 13456?
// the length would be 5, as well lcs(b,8) will return.
printf( " %d " , lcs( b, 8 ) );
}
由于只是找上升的子序列,因此可以进一步优化,优化算法的思想这样 (http://www.mydrs.org/program/list-id=583.htm):先回顾经典的O(n^2)的动态规划算法,设A[i]表示序列中的第i个数,F[i]表示从1到i这一段中以i结尾的最长上升子序列的长度,初始时设F[i] = 0(i = 1, 2, ..., len(A))。则有动态规划方程:F[i] = max{1, F[j] + 1} (j = 1, 2, ..., i - 1, 且A[j] < A[i])。
现在,我们仔细考虑计算F[i]时的情况。假设有两个元素A[x]和A[y],满足
(1)x < y < i (2)A[x] < A[y] < A[i] (3)F[x] = F[y]
此时,选择F[x]和选择F[y]都可以得到同样的F[i]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?
很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[i-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。
再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[i] = k的所有A[i]中的最小值。设D[k]记录这个值,即D[k] = min{A[i]} (F[i] = k)。
注意到D[]的两个特点:
(1) D[k]的值是在整个计算过程中是单调不上升的。
(2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。
利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[i]与D[len]。若A[i] > D[len],则将A[i]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A[i];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[i]。令k = j + 1,则有D[j] < A[i] <= D[k],将A[i]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[i]。最后,len即为所要求的最长上升子序列的长度。
在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!
这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意。 这种优化的算法的时间复杂度为O(nlog(n)) ,算法例子为: (http://www.algorithmist.com/index.php/Longest_Increasing_Subsequence.cpp)
using namespace std;
/* Finds longest strictly increasing subsequence. O(n log k) algorithm. */
template < typename T > vector < int > find_lis(vector < T > & a)
{
vector < int > b, p(a.size());
int u, v;
if (a.size() < 1 ) return b;
b.push_back( 0 );
for ( int i = 1 ; i < ( int )a.size(); i ++ ) {
if (a[b.back()] < a[i]) {
p[i] = b.back();
b.push_back(i);
continue ;
}
for (u = 0 , v = b.size() - 1 ; u < v;) {
int c = (u + v) / 2 ;
if (a[b[c]] < a[i]) u = c + 1 ; else v = c;
}
if (a[i] < a[b[u]]) {
if (u > 0 ) p[i] = b[u - 1 ];
b[u] = i;
}
}
for (u = b.size(), v = b.back(); u -- ; v = p[v]) b[u] = v;
return b;
}
/* Example of usage: */
#include < cstdio >
int main()
{
int a[] = { 1 , 9 , 3 , 8 , 11 , 4 , 5 , 6 , 4 , 19 , 7 , 1 , 7 };
vector < int > seq(a, a + sizeof (a) / sizeof (a[ 0 ]));
vector < int > lis = find_lis(seq);
for (unsigned i = 0 ; i < lis.size(); i ++ )
printf(i + 1 < lis.size() ? " %d " : " %d " , seq[lis[i]]);
return 0 ;
}