COdeForce:Bay 2023

文章讲述了如何处理大数(如2023)的因子检测问题,使用longlongint类型处理大数值,同时介绍了如何通过倍数关系或辗转相除法计算两个数的最小公倍数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A——2023

这个题目的意思其实就是看他给的几个数相乘后是不是2023的因子,如果是在输出k个数与之相乘后得到2023;其中有一个坑就是他的前面七个用例都是比较小的数但是最后一个数特别大就需要用long /long long int型来定义变量;

代码:

​

#include<stdio.h>
#include<string.h>
#include<stdlib.h>

int biao = 2023;
int main()
{
	int t;
	scanf("%d", &t);//输入用例个数
	int i; int n[100], k[100]; int p[100] = { 0 }; int b[100][100];
	for (i = 0; i < t; i++)
	{
		
	    scanf("%d %d", &n[i], &k[i]);//储存每一次用例的n(输入几个数)和k(输出几个数);
		int m = 0;
		while (n[i] > 0)
		{
			scanf("%d", &b[i][m]);//输入n个数字
			p[i]++;//记录有几个数字,最终其实就是等于了这一个用例的n值,所以可以在循环开始前将n赋值给p[i]。
			m++;
			n[i]--;
		}
	}
	long long int sum ; int q;//long long 型;因为测试用例大,当觉得自己算法没问题且只有极少数用例没通过是就要注意数范围会不会超过了int型的定义范围。
	for (i = 0; i < t; i++)
	{
		sum = 1;
		for (q = 0; q < p[i]; q++)
		{
			sum *= b[i][q];
		}

		if (biao % sum != 0)
		{
			printf("NO\n");
			continue;
		}
		else
		{
			long long int yizi;
			yizi = biao / sum;
			printf("YES\n%lld ", yizi);
			k[i]--;
		}
		while (k[i] > 0)//其实这个题目的结果在有些用例中是不一样的,就比如在题目中最后是17 17 7而我这里是2023 1 1;结果都是正确且符合题意的,相对来说用我这种方法更加简单快速直接输出第一个为2023/sum,然后其他全为1.
		{
			printf("1 ");
			k[i]--;
		}
		printf("\n");

	}



	return 0;
}

​

B——Two divisors

,其实这更多的是考察你是否对数字的敏感。如果你仔细观察会发现当两个数为倍数关系时,输出的就是大的那一个乘以他们之间的倍数比如5和1,结果是25,正和符合5*(5/1);当两者不是倍数关系时,输出的那个数就是他们的最小公倍数。

代码:

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
 
int main()
{ 
	int t;
	scanf("%d", &t); 
	int i; long long int a1[10000], a2[10000];
	for (i = 0; i < t; i++)
	{
		scanf("%lld %lld", &a1[i], &a2[i]);
	}
	for (i = 0; i < t; i++)
	{
		long long int ji;
		if (a2[i] % a1[i] == 0)
		{
			ji = a2[i] * (a2[i] / a1[i]);
		}
		else if (a1[i] % a2[i] == 0)
		{
			ji = a1[i] * (a1[i] / a2[i]);
		}
		else//利用辗转相除法先求两者的最大公约数,再求最小公倍数(两数相乘=最大公约数*最小公倍数),原因时用例太大如果时用不断加1或者需要时间太长会超时。(或许可以用某一个数乘以n(n从1不断增大),知道是两个数的公倍数.)
		{
			long long int max;
			max = a1[i] * a2[i];
			long long int re;
			while (a1[i])
			{
				re = a2[i] % a1[i];
				a2[i] = a1[i];
				a1[i] = re;
			}
			ji = max / a2[i];

		}
		printf("%lld\n", ji);
	 }


	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值