回归-regression

回归:数据(xi,yi)(i=1,n) xi是数据,yi是标记label,yi是连续的数据进行建模是回归问题,若yi是离散的叫分类问题classification;
回归–>>regression来自高尔顿;

线性回归,Logistic回归(二分类),Softmax回归(多分类);

梯度下降,最大似然估计(MLE),最小二乘法;

线性回归模型:
hθ(x)=ni=0θixi=θTx
x是数据, θ 是未知的参数;
y(i)=θTx(i)+ε(i)
ε(i) 是独立同分布的,服从均值为0,方差为 σ2 的正态分布;

最大似然估计+线性回归+样本服从正态分布—–》最小二乘法

其实是Legendre 提出了最小二乘法,高斯在此基础上提出正态分布;

假设:内涵性,简化性,发散性;

将M个N个特征的样本组成矩阵X:
X每一行对应一个样本,共M行,每一列对应一个特征,共N维,目标函数:
J(θ)=12(Xθy)T(Xθy)=12(θTXTXθθTXTyyTXθ+yθy)
目标函数取最大值,令其导数为0
J(θ)=2XTXθ2XTy=0 ====>
XTXθ=XTy XTX 可逆====>
θ=(XTX)1XTy

XTX 半正定,因为对于任意的非零向量u有:
uTXTXu=(Xu)TXu>=0
所以对于任意的正实数 λ>0,XTX+λI 正定,正定矩阵一定可逆,所以可以给 θ=(XTX)1XTy 中的 XTX 加上 λI ====>
θ=(XTX+λI)1XTy

线性回归的目标函数:
J(θ)=12mi=1(hθ(x(i))y(i))2
为了防止过拟合,在目标函数里加入正则项;
将目标函数增加平方和损失:
J(θ)=12mi=1(hθ(x(i))y(i))2+λnj=1θ2j
上式中后面一项是正则项,叫L2-NORM(L2正则项)—->Ridge回归;

J(θ)=12mi=1(hθ(x(i))y(i))2+λnj=1|θj|
上式中是L1-NORM—-》LASSO回归(Least Absolute Shrinkage and Selection Operator),用LARS算法解决LASSO计算;
可以用LASSO去降维;

还有L0-NORM,正则项为不为0参数的个数;
L1-NORM是L0-NORM的近似;

综合Ridge回归和LASSO回归得到Elastic Net:
J(θ)=12mi=1(hθ(x(i))y(i))2+λ(ρnj=1|θj|+(1ρ)nj=1θ2j)

正则化和稀疏

稀疏解:求解参数,希望某些参数为0(某些参数是无关的);
LASSO可以保证稀疏;

上述中的 λ 是超参数,其实调参调的是 λ ,实际的参数 θ 可以通过样本数据及 λ 直接计算出的;

总平方和:TSS(Total Sum of Squares):TSS=m*Var(Y)= (yiy¯)2
残差平方和:RSS(Residual Sum of Squares),也是误差平方和SSE(Sum of Squares for Error)= (yiyˆ)2
R2=1RSSTSS
R2 越大拟合效果越好,最优值为1,所模型预测为随机值,其可能为负值,若预测值恒为样本期望,则其值为0;
ESS(Explained Sum of Squares)= (y¯iyˆ)2 ,TSS>=ESS+RSS,ESS也称为回归平方和(Sum of Square for Regression);

局部加权回归:LWR(Local Weight Linear Regression)
w(i)(y(i)θTx(i))2
权值: w(i)=exp((x(i)x)22τ2)
其中 τ 称为带宽,它控制着训练样本随着与 x(i) 距离的衰减速率;

不建议用回归问题解决分类问题,还是建议用logistic和softmax做分类;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值