概率论与数理统计
文章平均质量分 51
logooooooogol
这个作者很懒,什么都没留下…
展开
-
最大似然估计理解
:Maximum Likelihood Estimation,简称MLE; 要理解此概念首先要看下什么叫贝叶斯公式,如下: P(θ|D)=P(D|θ)P(θ)P(D)P(\theta |D)=\frac{P(D|\theta )P(\theta )}{P(D)} 我们把D看作是样本,θ\theta看作是这个样本所服从分布的参数,那么上式左侧P(θ|D)P(\theta |D)可理解原创 2017-11-17 20:12:42 · 1350 阅读 · 1 评论 -
PCA-principal component analysis
PCA—–主成分分析,通常用于降维! 找到样本的主方向,怎么找到呢,主方向具有如下本质特征: 样本在主方向上投影的方差最大! A为n个样本k个特征的矩阵,且已经进行中心话,即E=0; J(u)=Var(Au)=(Au−E)T(Au−E)=uTATAuJ(u)=Var(Au)=(Au-E)^{T}(Au-E)=u^{T}A^{T}Au,如果假设uu为单位化向量,即uTu=1u^{T}u=1即u原创 2017-11-17 23:14:32 · 202 阅读 · 0 评论