LeetCode_51.N皇后问题

51. N皇后

皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

                                                  

上图为 8 皇后问题的一种解法。

给定一个整数 n,返回所有不同的 皇后问题的解决方案。

每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例:

输入: 4
输出: [
 [".Q..",  // 解法 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // 解法 2
  "Q...",
  "...Q",
  ".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。

解题思路:回溯法(一定要明白回溯的意思,就是递归的基础上回溯查找解)

解题代码:

1.

class Solution {
private:
    vector<vector<string>> res;
    
    vector<bool> col,dia1,dia2;
    //尝试在一个n皇后问题中,摆放第i行的皇后问题
    void putNQueen(int n, int i, vector<int> &row)
    {
        if(i==n)                                  //递归终止条件
        {
            res.push_back(generateBoard(n,row));
            return ;
        }
        
        for(int j=0;j<n;j++)                     //递归过程
            //尝试将第i行的皇后摆放在第j列
            if(!col[j] && !dia1[i+j] && !dia2[i-j+n-1])
            {
                row.push_back(j);
                col[j]=true;
                dia1[i+j]=true;
                dia2[i-j+n-1]=true;
                putNQueen(n,i+1,row);
                col[j]=false;         //回溯
                dia1[i+j]=false;
                dia2[i-j+n-1]=false;
                row.pop_back();
            }
        return;                                   //返回
    }
    
    vector<string> generateBoard(int n,vector<int> &row)
    {
        assert(row.size()==n);
        vector<string> board(n,string(n,'.'));
        for(int i=0;i<n;i++)
            board[i][row[i]]='Q';
        return board;
    }   
    
public:
    vector<vector<string>> solveNQueens(int n) {
        res.clear();
        
        vector<int> row;
        col=vector<bool>(n,false);
        dia1=vector<bool>(2*n-1,false);
        dia2=vector<bool>(2*n-1,false);
        
        putNQueen(n,0,row);
        
        return res;
    }

};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值