Correlation coefficients and appliction in fMRI Data

背景知识

皮尔逊相关系数(Pearson correlation coefficient)

ρ i j = ρ ( X i , X j ) = c o v ( X i , X j ) D ( X i ) D ( X j ) \begin{aligned} \rho_{ij} &= \rho \left( \mathbf{X}_i, \mathbf{X}_j \right) \\ &= \frac{cov \left( \mathbf{X}_i, \mathbf{X}_j \right)} {\sqrt{D(\mathbf{X}_i)} \sqrt{D(\mathbf{X}_j)}} \\ \end{aligned} ρij=ρ(Xi,Xj)=D(Xi) D(Xj) cov(Xi,Xj)

肯德尔和谐系数(Kendall’s W)

Kendall’s W解决的原始问题是在不同人对多个事物进行评分时, 如何对这些人评分结果的一致性进行评价.

假设存在 n n n件物体, 并由 m m m个不同的人进行评分或排序, 且第 j j j个人对第 i i i件物体的评分为 r i j r_{ij} rij(在该问题中, 每个评分实际表示的是排序, 为1到n之间的整数且不重复), 则这些评分可表示为
R = { r i j } n × m \mathbf{R}=\{ r_{ij} \}_{n \times m} R={rij}n×m

物体 i i i的总分为
R i = ∑ j = 1 m r i j R_i=\sum_{j=1}^m r_{ij} Ri=j=1mrij

所有物体的平均得分为
R ˉ = 1 n ∑ i = 1 n R i = 1 n ∑ i = 1 n ∑ j = 1 m r i j = 1 n ∑ j = 1 m n ( n + 1 ) 2 = m ( n + 1 ) 2 \begin{aligned} \bar{R} &=\frac{1}{n} \sum_{i=1}^n R_i \\ &= \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^m r_{ij} \\ &= \frac{1}{n} \sum_{j=1}^m \frac{n(n+1)}{2} \\ &= \frac{m(n+1)}{2} \end{aligned} Rˉ=n1i=1nRi=n1i=1nj=1mrij=n1j=1m2n(n+1)=2m(n+1)

所有物体得分的方差之和为 S = ∑ i = 1 n ( R i − R ˉ ) 2 S=\sum_{i=1}^n \left( R_i -\bar{R} \right)^2 S=i=1n(RiRˉ)2, 则Kendall’s W定义为
W = 12 S m 2 ( n 3 − n ) W=\frac{12S}{m^2 (n^3-n)} W=m2(n3n)12S
其中 m 2 ( n 3 − n ) 12 \frac{m^2 (n^3-n)}{12} 12m2(n3n)表示 S S S可能出现的最大值, 当且仅当所有人对同一个物体的评分一致时(即评分一致)得到, 而最小值则在 R i = R ˉ R_i = \bar{R} Ri=Rˉ时得到.
max ⁡ S = ∑ i = 1 n ( m i − R ˉ ) 2 = ∑ i = 1 n [ m 2 i 2 − m 2 i ( n + 1 ) + m 2 ( n + 1 ) 2 4 ] = m 2 n ( n + 1 ) ⋅ 2 n + 1 6 − m 2 n ( n + 1 ) ⋅ n + 1 4 = m 2 n ( n + 1 ) ⋅ n − 1 12 = m 2 ( n 3 − n ) 12 \begin{aligned} \max{S} &= \sum_{i=1}^n \left( mi-\bar{R} \right)^2 \\ &= \sum_{i=1}^n \left[ m^2 i^2 - m^2 i (n+1) + \frac{m^2 (n+1)^2}{4} \right] \\ &= m^2 n (n+1) \cdot \frac{2n+1}{6} - m^2 n (n+1) \cdot \frac{n+1}{4} \\ &= m^2 n (n+1) \cdot \frac{n-1}{12} \\ &= \frac{m^2(n^3-n)}{12} \end{aligned} maxS=i=1n(miRˉ)2=i=1n[m2i2m2i(n+1)+4m2(n+1)2]=m2n(n+1)62n+1m2n(n+1)4n+1=m2n(n+1)12n1=12m2(n3n)
使得 W W W的范围缩小至 [ 0 , 1 ] \left[0, 1\right] [0,1].

fMRI数据

功能磁共振成像数据的基本元素为体素的时间序列 X i = [ x i 1 , x i 2 , ⋯   , x i T ] T \mathbf{X}_i=\left[x_{i1}, x_{i2}, \cdots, x_{iT} \right]^T Xi=[xi1,xi2,,xiT]T, 则一个被试的全脑数据可表示为
X = [ X 1 , X 2 , ⋯   , X R ] T = [ x 11 x 12 ⋯ x 1 T x 21 x 22 ⋯ x 2 T ⋮ ⋮ ⋱ ⋮ x R 1 x R 2 ⋯ x R T ] R × T \begin{aligned} \mathbf{X} &=\left[\mathbf{X}_1, \mathbf{X}_2, \cdots, \mathbf{X}_{R} \right]^T \\ &= \left[ \begin{matrix} x_{11} & x_{12} & \cdots & x_{1T} \\ x_{21} & x_{22} & \cdots & x_{2T} \\ \vdots & \vdots & \ddots & \vdots \\ x_{R1} & x_{R2} & \cdots & x_{RT} \end{matrix} \right]_{R \times T} \end{aligned} X=[X1,X2,,XR]T=x11x21xR1x12x22xR2x1Tx2TxRTR×T
其中 R = W × H × D R=W \times H \times D R=W×H×D表示体素的数量, W , H , D W, H, D W,H,D分别表示脑影像数据在三个维度上的大小, T T T表示时间序列的长度, X r ∈ R T \mathbf{X}_r \in \mathbb{R}^T XrRT表示第 R R R个体素的时间序列.

根据AAL(Anatominal Atlas Label)模版, 全脑可分为116个脑区, 即将所有体素划分至116个集合中
R O I i = { j 1 , j 2 , ⋯   , j R i } i = 1 , 2 , ⋯   , 116 ROI_i=\{ j_1, j_2, \cdots, j_{R_i} \} \quad i=1,2,\cdots,116 ROIi={j1,j2,,jRi}i=1,2,,116
其中, R i R_i Ri表示第i个脑区包含的体素数量.

功能连接

功能连接的计算步骤如下

  1. 计算各脑区的平均时间序列
    X ˉ i = 1 R i ∑ j ∈ R O I i X j \mathbf{\bar{X}}_i = \frac{1}{R_i} \sum_{j \in ROI_i} \mathbf{X}_j Xˉi=Ri1jROIiXj
  2. 计算两个脑区之间的Pearson相关系数
    ρ i j = ρ ( X ˉ i , X ˉ j ) = c o v ( X ˉ i , X ˉ j ) D ( X ˉ i ) D ( X ˉ j ) \begin{aligned} \rho_{ij} &= \rho \left( \bar{\mathbf{X}}_i, \bar{\mathbf{X}}_j \right) \\ &= \frac{cov \left( \bar{\mathbf{X}}_i, \bar{\mathbf{X}}_j \right)} {\sqrt{D(\bar{\mathbf{X}}_i)} \sqrt{D(\bar{\mathbf{X}}_j)}} \\ \end{aligned} ρij=ρ(Xˉi,Xˉj)=D(Xˉi) D(Xˉj) cov(Xˉi,Xˉj)

由于 ρ ( X ˉ i , X ˉ j ) = ρ ( α ^ i X i , α ^ j X j ) \rho \left( \bar{\mathbf{X}}_i, \bar{\mathbf{X}}_j \right)= \rho \left(\boldsymbol{\hat{\alpha}}_i \mathbf{X}_i, \boldsymbol{\hat{\alpha}}_j \mathbf{X}_j \right) ρ(Xˉi,Xˉj)=ρ(α^iXi,α^jXj), 其中 α ^ i \boldsymbol{\hat{\alpha}}_i α^i为长度为 R i R_i Ri, 所有元素为 1 R i \frac{1}{R_i} Ri1的向量. 因此有
ρ i j = ρ ( X ˉ i , X ˉ j ) = ρ ( α i X i , α j X j ) = α ^ i T Σ X i X j α ^ j α ^ i T Σ X i X i α ^ i α ^ j T Σ X j X j α ^ j = α i T Σ X i X j α j α i T Σ X i X i α i α j T Σ X j X j α j \begin{aligned} \rho_{ij} &= \rho \left( \bar{\mathbf{X}}_i, \bar{\mathbf{X}}_j \right) \\ &= \rho \left( \boldsymbol{\alpha}_i \mathbf{X}_i, \boldsymbol{\alpha}_j \mathbf{X}_j \right) \\ &= \frac{\boldsymbol{\hat{\alpha}}_i^T \Sigma_{\mathbf{X}_i \mathbf{X}_j} \boldsymbol{\hat{\alpha}}_j} {\sqrt{\boldsymbol{\hat{\alpha}}_i^T \Sigma_{\mathbf{X}_i \mathbf{X}_i} \boldsymbol{\hat{\alpha}}_i} \sqrt{\boldsymbol{\hat{\alpha}}_j^T \Sigma_{\mathbf{X}_j \mathbf{X}_j} \boldsymbol{\hat{\alpha}}_j}} \\ &= \frac{\boldsymbol{\alpha}_i^T \Sigma_{\mathbf{X}_i \mathbf{X}_j} \boldsymbol{\alpha}_j} {\sqrt{\boldsymbol{\alpha}_i^T \Sigma_{\mathbf{X}_i \mathbf{X}_i} \boldsymbol{\alpha}_i} \sqrt{\boldsymbol{\alpha}_j^T \Sigma_{\mathbf{X}_j \mathbf{X}_j} \boldsymbol{\alpha}_j}} \\ \end{aligned} ρij=ρ(Xˉi,Xˉj)=ρ(αiXi,αjXj)=α^iTΣXiXiα^i α^jTΣXjXjα^j α^iTΣXiXjα^j=αiTΣXiXiαi αjTΣXjXjαj αiTΣXiXjαj
其中 Σ X i X j \Sigma_{\mathbf{X}_i \mathbf{X}_j} ΣXiXj表示随机向量 X i \mathbf{X}_i Xi X j \mathbf{X}_j Xj的协方差矩阵, α i \boldsymbol{\alpha}_i αi α j \boldsymbol{\alpha}_j αj分别表示所有元素为1, 长度为 R i , R j R_i, R_j Ri,Rj的向量.

局部一致性(Regional Homogeneity)(此章节有误)

局部一致性的计算过程如下

  1. 选取中心体素 X i = [ x i 1 , x i 2 , ⋯   , x i T ] T \mathbf{X}_i=[x_{i1}, x_{i2}, \cdots, x_{iT}]^T Xi=[xi1,xi2,,xiT]T
  2. 以体素 X i \mathbf{X}_i Xi为中心选取周围的体素(在DPARSF standard processing pipeline中, 为相邻的 K = 27 K=27 K=27个体素)
    X ~ i = [ X i 1 , X i 2 , ⋯   , X i K ] T = [ x i 1 1 x i 1 2 ⋯ x i 1 T x i 2 1 x i 2 2 ⋯ x i 1 T ⋮ ⋮ ⋱ ⋮ x i K 1 x i K 2 ⋯ x i K T ] \begin{aligned} \widetilde{\mathbf{X}}_i &=\left[ \mathbf{X}_{i_1}, \mathbf{X}_{i_2}, \cdots, \mathbf{X}_{i_{K}} \right]^T \\ &= \left[ \begin{matrix} x_{i_1 1} & x_{i_1 2} & \cdots & x_{i_1 T} \\ x_{i_2 1} & x_{i_2 2} & \cdots & x_{i_1 T} \\ \vdots & \vdots & \ddots & \vdots \\ x_{i_{K} 1} & x_{i_{K} 2} & \cdots & x_{i_{K} T} \end{matrix} \right] \end{aligned} X i=[Xi1,Xi2,,XiK]T=xi11xi21xiK1xi12xi22xiK2xi1Txi1TxiKT
  3. 根据Kendall’s W的计算, 得到该体素的局部一致性
    (1) 计算所有时间点的和
    X ~ i t S = ∑ j = 1 K x i j t t = 1 , 2 , ⋯   , T \widetilde{\mathbf{X}}_{it}^S=\sum_{j=1}^{K} x_{i_j t} \quad t=1,2, \cdots, T X itS=j=1Kxijtt=1,2,,T
    也可以表示成为矩阵与向量的形式
    X ~ i S = ∑ j = 1 K X i j = α X ~ i \begin{aligned} \widetilde{\mathbf{X}}_i^S &= \sum_{j=1}^{K} \mathbf{X}_{i_j} \\ &= \boldsymbol{\alpha} \widetilde{\mathbf{X}}_i \end{aligned} X iS=j=1KXij=αX i
    其中 α = [ 1 , 1 , ⋯   , 1 ] \boldsymbol{\alpha}=[1, 1, \cdots, 1] α=[1,1,,1]是维数为 1 × 27 1 \times 27 1×27的向量.
    (2) 计算所有体素的平均值
    X ˉ i = 1 T ∑ j = 1 K ∑ t = 1 T x i j t = 1 T ∑ t = 1 T X ~ i t S \begin{aligned} \bar{\mathbf{X}}_i &= \frac{1}{T} \sum_{j=1}^{K} \sum_{t=1}^T x_{i_j t} \\ &= \frac{1}{T} \sum_{t=1}^T \widetilde{\mathbf{X}}_{it}^S \end{aligned} Xˉi=T1j=1Kt=1Txijt=T1t=1TX itS
    (3) 计算Kendall’s W
    W i = 12 S i K 2 ( T 3 − T ) W_i = \frac{12S_i}{K^2 (T^3 - T)} Wi=K2(T3T)12Si
    其中 S S S表示所有时间序列和的方差
    S i = D ( X ~ i S ) = D ( α X ~ i ) = ∑ j = 1 K D ( X i j ) = α T Σ X ~ i X ~ i α \begin{aligned} S_i &= D(\widetilde{\mathbf{X}}_i^S ) = D(\boldsymbol{\alpha} \widetilde{\mathbf{X}}_i) \\ &= \sum_{j=1}^K D(\mathbf{X}_{i_j}) \\ &= \boldsymbol{\alpha}^T \Sigma_{\widetilde{\mathbf{X}}_i \widetilde{\mathbf{X}}_i} \boldsymbol{\alpha} \end{aligned} Si=D(X iS)=D(αX i)=j=1KD(Xij)=αTΣX iX iα
    因此
    W i = 12 K 2 ( T 3 − T ) S i = 12 K 2 ( T 3 − T ) ∑ j = 1 K D ( X i j ) = 12 K 2 ( T 3 − T ) α T Σ X ~ i X ~ i α \begin{aligned} W_i &= \frac{12}{K^2(T^3-T)} S_i \\ &= \frac{12}{K^2(T^3-T)} \sum_{j=1}^K D(\mathbf{X}_{i_j}) \\ &= \frac{12}{K^2(T^3-T)} \boldsymbol{\alpha}^T \Sigma_{\widetilde{\mathbf{X}}_i \widetilde{\mathbf{X}}_i} \boldsymbol{\alpha} \end{aligned} Wi=K2(T3T)12Si=K2(T3T)12j=1KD(Xij)=K2(T3T)12αTΣX iX iα
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值