# Finding a Loop in a Singly Linked List

## Motivation

A singly linked list is a common data structure familiar to all computer scientists. A singly linked list is made of nodes where each node has a pointer to the next node (or null to end the list). A singly linked list is often used as a stack (or last in first out queue (LIFO)) because adding a new fist element, removing the existing first element, and examining the first element are very fast O(1) operations.

When working with singly linked list, you are typically given a link to the first node. Common operations on a singly linked list are generally iterating through all the nodes and performing an action on them, adding to the list, or deleting from the list. Algorithms for these operations generally require a well formed linked list. That is a linked list without loops or cycles in it.

If a linked list has a cycle:

• The malformed linked list has no end (no node ever has a null next_node pointer)
• Iterating through the malformed linked list will yield all nodes in the loop multiple times

A malformed linked list with a loop causes iteration over the list to fail because the iteration will never reach the end of the list. Therefore, it is desirable to be able to detect that a linked list is malformed before trying an iteration. This article is a discussion of various algorithms to detect a loop in a singly linked list.

## Incorrect "Solutions"

### Mark Each Node

Traverse the list and mark each node as having been seen. If you come to a node that has already been marked, then you know that the list has a loop.

// Incorrect 'solution'
function boolean hasLoop(Node startNode){
Node currentNode = startNode;
do {
if (currentNode.seen) return true;
currentNode.seen = true;
} while (currentNode = currentNode.next());
return false;
}

The problem with this solution is ensuring that "seen" is marked as false for all the nodes before you start. If the linked list has a loop, it isn't possible to iterate over each node to set "seen" to "false" as an initial value for each node.

Even if you are able to solve the initial value problem, each node in a linked list may not have a field to use for this purpose. Requiring such a field in each node would mean that this is not a generic solution. As we will see later, this field in not needed for a perfectly correct and efficient solution anyway.

### Detect Only Full Loops

When asked to come up with a solution, a common pitfall is not detecting all loops, but just a loop where the last node links to the first. A loop could still occur (and not be detected) if the last element linked to (for example) the second element.

// Incorrect 'solution'
function boolean hasLoop(Node startNode){
Node currentNode = startNode;
while (currentNode = currentNode.next()){
if (currentNode == startNode) return true;
}
return false;
}

## Inefficient Solutions

### Keep a hash set of all nodes seen so far

O(n) time complexity, O(n) space complexity

Keeping a set of all the nodes have seen so far and testing to see if the next node is in that set would be a perfectly correct solution. It would run fast as well. However it would use enough extra space to make a copy of the linked list. Allocating that much memory is prohibitively expensive for large lists.

// Inefficient solution
function boolean hasLoop(Node startNode){
HashSet nodesSeen = new HashSet();
Node currentNode = startNode;
do {
if (nodesSeen.contains(currentNode)) return true;
} while (currentNode = currentNode.next());
return false;
}

### Use a doubly linked list

O(n) time complexity

// Inefficient solution
function boolean hasLoop(Node startNode){
Node currentNode = startNode;
Node previousNode = null;
do {
if (previousNode && currentNode.prev() && previousNode != currentNode.prev()) return true;
if (!currentNode.prev()) currentNode.setPrev(previousNode);
previousNode = currentNode;
} while (currentNode = currentNode.next());
return false;
}

### Check the Entire List So Far

O(n^2) time complexity

For each node, assume that the portion of the list examined so for has no loops and check to see if the next node creates a loop by iterating again over the entire list up to that point.

// Inefficient solution
function boolean hasLoop(Node startNode){
Node currentNode = startNode;
int i=0;
do {
Node checkNode = startNode;
int j=0;
do {
if (checkNode == currentNode) return true;
j++;
} while (i<j && checkNode = currentNode.next());
i++;
} while (currentNode = currentNode.next());
return false;
}

### Catch Larger and Larger Loops

O(n log n) time complexity

Always store some node to check. Occasionally reset this node to avoid the "Detect Only Full Loops" problem. When resetting it, double the amount of time before resetting it again to get log n behavior.

// Inefficient solution
function boolean hasLoop(Node startNode){
Node currentNode = startNode;
Node checkNode = null;
int since = 0;
int sinceScale = 2;
do {
if (checkNode == currentNode) return true;
if (since >= sinceScale){
checkNode = currentNode;
since = 0;
sinceScale = 2*sinceScale;
}
since++;
} while (currentNode = currentNode.next());
return false;
}

## Best Solution

### Catch Loops in Two Passes

O(n) time complexity

Simultaneously go through the list by ones (slow iterator) and by twos (fast iterator). If there is a loop the fast iterator will go around that loop twice as fast as the slow iterator. The fast iterator will lap the slow iterator within a single pass through the cycle. Detecting a loop is then just detecting that the slow iterator has been lapped by the fast iterator.

// Best solution
function boolean hasLoop(Node startNode){
Node slowNode = Node fastNode1 = Node fastNode2 = startNode;
while (slowNode && fastNode1 = fastNode2.next() && fastNode2 = fastNode1.next()){
if (slowNode == fastNode1 || slowNode == fastNode2) return true;
slowNode = slowNode.next();
}
return false;
}

This solution is "Floyd's Cycle-Finding Algorithm" as published in "Non-deterministic Algorithms" by Robert W. Floyd in 1967. It is also called "The Tortoise and the Hare Algorithm".