直接看大神的帖子就行了。一开始我也没想明白
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode detectCycle(ListNode head) {
if (head == null || head.next == null) {
return null;
}
ListNode slow = head;
ListNode fast = head.next;
while (fast != slow) {
if (fast == null || fast.next == null) {
return null;
}
fast = fast.next.next;
slow = slow.next;
}
while (head != slow.next) {
head = head.next;
slow = slow.next;
}
return head;
}
}
Given a linked list, return the node where the cycle begins. If there is no cycle, return null
Follow up:
Can you solve it without using extra space?
给定一个链表的头指针,问你能不能只用常数的空间快速判断一个链表是不是有环,如果有环,返回环的起始位置。
eg:比如 A->B->C->D->E->C返回C的指针
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
}
};
对于判断链表是否有环,方法很简单,用两个指针,一开始都指向头结点,一个是快指针,一次走两步,一个是慢指针,一次只走一步,当两个指针重合时表示存在环了。
证明:假设链表有环,环的长度为N,慢指针在起始位置,快指针在位置k(位置从0开始计数),那么快指针只要比慢指针多走经过N-k步,就可以追上慢指针了。。。,因为每一次快指针都比慢指针多走一步,所以一定可以在有限的步数追上慢指针。
现在的问题是如何求出环的起始位置,我们先给出结论:当快指针和慢指针重合的时候,把一个指针重新指向头指针,两个指针现在速度一样,一次走一步,那么当两个指针值相同时,所在的指针就是我们要找的起始位置。
证明内容来自一个国外的网站:http://umairsaeed.com/2011/06/23/finding-the-start-of-a-loop-in-a-circular-linked-list/
要证明上面这个结论,我们先证明一个结论,假设慢指针Slow停在环的起始位置时,快指针Fast停在第k个位置,那么两个指针相遇时会停在从起始位置倒数第k个位置,也就是n-k这个位置
从Slow停在环的起始位置,假设最终停在n-x相遇。
因为Fast只要再比Slow多走n-k步,就可以追上Slow,而每一次操作Fast都比Slow多走一步,因为只需要再走n-k步就可以追上Slow,此时Slow停在n-k这个位置。
这意味着,如果Slow从环的起始位置,Fast从环的第k个位置开始,最终两个指针会在n-k这个位置相遇(n为环的长度)
假设一开始Fast和Slow从开始位置开始遍历这个链表。
令m = 3,表示经过三步,Slow结点到达环的起始位置,此时Fast在环的第m个位置,因为Fast比Slow多走了m步
根据刚才的结论,当Slow停在起始位置,Fast停在m位置,两个链表最后会在n-m位置相遇
此时把Slow移到头结点位置,两个结点都是要经过m步,才刚刚好到达环的起始位置。
这里好起来好像m小于环的长度l,才成立。其实是一样的。
假设m = t*l+k
这就是说,环最终停在n-k这个位置了。还需要k步就可以到达环的起始结点。而把Slow结点重新设置为头结点,则需要t*l+k步才第一次到达环的起始结点,
但是注意了,多走了k*l步,Fast结点还是会停在环的起始位置的。
得证!!!