oracle中的number数据类型的浅析

oracle的number的浅析

 

从如下几个方面来认识number


   1.表示的数值范围
   2.占用的存储空间
   3.number的性能

 

我们日常主要定义数值存储列是大都是用number,不过oracle也兼容一些以他类型,如下:

 

NUMERIC(p,s):完全映射至NUMBER(p,s)。如果p未指定,则默认为38.
DECIMAL(p,s)或DEC(p,s):完全映射至NUMBER(p,s)。如果p为指定,则默认为38.
INTEGER或INT:完全映射至NUMBER(38)类型。
SMALLINT:完全映射至NUMBER(38)类型。
FLOAT(b):映射至NUMBER类型。
DOUBLE PRECISION:映射至NUMBER类型。
REAL:映射至NUMBER类型。

 

以上这些类型只是oracle在语法上支持的,在底层实际上还是number

 


 1.表示的数值范围


NUMBER:Oracle NUMBER类型能以极大的精度存储数值,具体来讲,精度可达38位。其底层数据格式类似一种
       “封包小数“表示。Oracle NUMBER类型是一种变长格式,长度为0~22字节。它可以存储小到10e-130、
        大到(但不包括)10e126的任何数值。这是目前最为常用的数值类型。也是Oracle9i Release 2及以
        前的版本只支持的唯一一种适合存储数值数据的固有数据类型,其他一起兼容类型只是一种和number
        之间的映射,在底层实际上都是number

BINARY_FLOAT:这是一种IEEE固有的单精度浮点数。它在磁盘上会占用5字节的存储空间:其中4个固定字节用
              于存储浮点数,另外还有一个长度字节。BINARY_FLOAT能存储有6为精度、范围在~±1038.53
              的数值

BINARY_DOUBLE:这是一种IEEE固有的双精度浮点数。它在磁盘上会占用9字节的存储空间:其中8个固定字节用
               于存储浮点数,还有一个长度字节。BINARY_DOUBLE能存储有12.位精度、范围在~±10308.25的
               数值。

 


取值范举例:

 

创建测试表t2
SQL>  create table t2
  2   ( num_type number,
  3     float_type binary_float,
  4     double_type binary_double
  5   );

Table created

 

 

插入测试数据1
SQL>
SQL> insert into t2
  2    (num_type, float_type, double_type)
  3  values
  4    (1234567890.0987654321, 1234567890.0987654321, 1234567890.0987654321);

1 row inserted

 

 

查看测试数据1
SQL>
SQL>  select to_char(num_type),
  2          to_char(float_type, '999999999999.999999999'),
  3          to_char(double_type, '99999999999.9999999999')
  4     from t2
  5  ;

TO_CHAR(NUM_TYPE)               TO_CHAR(FLOAT_TYPE,'9999999999            TO_CHAR(DOUBLE_TYPE,'999999999
--------------------------- -----------------------------------------------------------------------------------
1234567890.0987654321            1234567940.000000000                        1234567890.0987654000

 

 

 

插入测试数据2
SQL>
SQL> insert into t2
  2    (num_type, float_type, double_type)
  3  values
  4    (12345678900987654321, 12345678900987654321, 12345678900987654321);

1 row inserted

 

 


查看测试数据2
SQL>
SQL>  select to_char(num_type),
  2          to_char(float_type, '999999999999999999999'),
  3          to_char(double_type, '999999999999999999999')
  4     from t2
  5  ;

TO_CHAR(NUM_TYPE)                        TO_CHAR(FLOAT_TYPE,'9999999999                                                   TO_CHAR(DOUBLE_TYPE,'999999999
---------------------------------------- -------------------------------------------------------------------------------- --------------------------------------------------------------------------------
1234567890.0987654321                                1234567940                                                                       1234567890
12345678900987654321                       12345679400000000000                                                             12345678900987654000

SQL>

 

 

从测试结果可以看到,number可以正确显示数据,精度很高;binary_float只正确的显示了前7位;binary_double显示的数据范围和精度要比binary_float高很多。

 

 


2.占用的存储空间

 

number类型占用0-22个字节,它实际上是磁盘上的一个变长数据类型,是oracle根据一定算法,采用尽可能少存储空间表示一个数

 

SQL> create table t ( x number, y number );

Table created

 

SQL>
SQL>  insert into t ( x )
  2   select to_number(rpad('9',rownum*2,'9'),'999999999999999999999999999999999999999999999999999999999')
  3   from all_objects
  4   where rownum <= 25;

25 rows inserted

 

SQL> update t set y = x+1;

25 rows updated

 

SQL> column 数字1 format 9999999999999999999999999999999999999999999999999999999999999999999999999


SQL> column 数字2 format 9999999999999999999999999999999999999999999999999999999999999999999999999


SQL>  select to_char(x) 数字1, to_char(y) 数字2, vsize(x) 数字1占字节数, vsize(y) 数字2占字节数 from t order by x;

数字1                                             数字2                                       数字1占字节数 数字2占字节数
----------------------------------------------- ------------------------------------------------------------------------- ------------- -------------
99                                              100                                             2             2
9999                                            10000                                           3             2
999999                                          1000000                                         4             2
99999999                                        100000000                                       5             2
9999999999                                      10000000000                                     6             2
999999999999                                    1000000000000                                   7             2
99999999999999                                  100000000000000                                 8             2
9999999999999999                                10000000000000000                               9             2
999999999999999999                              1000000000000000000                            10             2
99999999999999999999                            100000000000000000000                          11             2
9999999999999999999999                          10000000000000000000000                        12             2
999999999999999999999999                        1000000000000000000000000                      13             2
99999999999999999999999999                      100000000000000000000000000                    14             2
9999999999999999999999999999                    10000000000000000000000000000                  15             2
999999999999999999999999999999                  1000000000000000000000000000000                16             2
99999999999999999999999999999999                100000000000000000000000000000000              17             2
9999999999999999999999999999999999              10000000000000000000000000000000000            18             2
999999999999999999999999999999999999            1000000000000000000000000000000000000          19             2
99999999999999999999999999999999999999          100000000000000000000000000000000000000        20             2
9999999999999999999999999999999999999999        1.0000000000000000000000000000000000E+40       21             2

数字1                                                                     数字2               数字1占字节数 数字2占字节数
--------------------------------------------------------------------------------------------------- ------------- -------------
1.0000000000000000000000000000000000E+42         1.0000000000000000000000000000000000E+42      2             2
1.0000000000000000000000000000000000E+44         1.0000000000000000000000000000000000E+44      2             2
1.0000000000000000000000000000000000E+46         1.0000000000000000000000000000000000E+46      2             2
1.0000000000000000000000000000000000E+48         1.0000000000000000000000000000000000E+48      2             2
1.0000000000000000000000000000000000E+50         1.0000000000000000000000000000000000E+50      2             2

25 rows selected

SQL>

 

 

从例子可以看出,在oracle存储有效数据(非0数据)时,每增加两位数,数据的存储空间就增加一个字节,直到数据溢出。
Oracle存储一个数时,会存储尽可能少的内容来表示这个数。为此会存储有效数字和用于指定小数点位置的一个指数,以及
有关数值符号的信息(正或负)。因此,数中包含的有效数字越多,占用的存储空间就越大。

 


BINARY_FLOAT与BINARY_DOUBLE


浮点数用于近似数值;它们没有Oracle内置的 NUMBER类型那么精确。浮点数常用在科学计算中,由于允许在硬件(CPU、芯片)
上执行运算,而不是在Oracle子例程中运算,所以在多种不同类型的应用中都很有用。因此,如果在一个科学计算应用中执行
实数处理,算术运算的速度会快得多。

 

BINARY_FLOAT在磁盘上会占用5字节的存储空间:其中4个固定字节用于存储浮点数,另外还有一个长度字节
BINARY_DOUBLE在磁盘上会占用9字节的存储空间:其中8个固定字节用于存储浮点数,另外还有一个长度字节

 

 

 

3.number的性能
Oracle NUMBER类型对大多数应用来讲都是最佳的选择,尤其是经融行业,不过有利必有弊,number会带来性能的影响。
因为Oracle NUMBER类型是一种软件数据类型,是在Oracle软件本身中实现。我们不能使用固有硬件操作将两个NUMBER
类型相加,这要在软件中模拟,所以性能有很大的影响,为此,oracle又提供的两个浮点类型的BINARY_FLOAT与BINARY_DOUBLE。

 

 

下面举例说明性能对比

 


创建测试表
SQL>  create table t2
  2   ( num_type number,
  3     float_type binary_float,
  4     double_type binary_double
  5   );

Table created

 

SQL>
SQL>  insert /*+ APPEND */ into t2
  2   select rownum, rownum, rownum
  3   from all_objects
  4  ;

57302 rows inserted

 

SQL> alter session set events '10046 trace name context forever ,level 1';

Session altered

 

SQL>  select sum(ln(num_type)) from t2;

SUM(LN(NUM_TYPE))
-----------------
 570510.312356972

 

SQL>  select sum(ln(float_type)) from t2;

SUM(LN(FLOAT_TYPE))
-------------------
    570510.31235697

 

SQL>  select sum(ln(double_type)) from t2;

SUM(LN(DOUBLE_TYPE))
--------------------
     570510.31235697

 

SQL>  select sum(ln(cast(num_type as binary_double ) )) from t2;

SUM(LN(CAST(NUM_TYPEASBINARY_D
------------------------------
               570510.31235697

 

SQL> alter session set events '10046 trace name context off ';

Session altered

SQL>

 

查看跟踪文件内容如下:

 

........

********************************************************************************

select sum(ln(num_type))
from
 t2


call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          3          1           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        1      2.31       2.25         38        193          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        3      2.31       2.25         38        196          1           1


********************************************************************************

select sum(ln(float_type))
from
 t2


call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          1          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        1      0.04       0.04          0        193          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        3      0.04       0.04          0        194          0           1


********************************************************************************

select sum(ln(double_type))
from
 t2


call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          1          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        1      0.03       0.04          0        193          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        3      0.04       0.04          0        194          0           1


********************************************************************************

select sum(ln(cast(num_type as binary_double ) ))
from
 t2


call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          1          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        1      0.10       0.09          0        193          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        3      0.10       0.10          0        194          0           1

 

从测试结果来看,number的性能确实很慢,比浮点类型BINARY_FLOAT与BINARY_DOUBLE慢57倍多,不过可以cast函数来转换下,
在对number执行复杂数学运算之前先将其转换为一种浮点数类型,这样就会提高计算速度,但还是比直接用浮点类型慢很多,
但也是一个折中的方法。

----------------------------------------

author:skate

time:2011-02-14


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值