第二十一章: 图像及视频去背景
我们做目标识别、目标检测的时候经常需要去背景,比如车辆检测,就是摄像头拍摄一段车辆行驶视频,统计一下视频里面的车流量,此时我们首先要识别出图片中的车辆才能计数有多少辆车,而要识别车辆就需要先把车辆从图像中分割出来再做识别,而把车辆分割出来就是将前景物体从背景中分离出来,就是我们需要把视频的背景全部去掉,只剩下车辆,然后再进行其他操作。
所以去背景就是前后景分割和提取,去背景的方法和手段有很多,我们第十七章也详细讲了两种去背景的算法:分水岭算法和GrabCut算法。本章讲meanshift算法和几种视频去背景算法。
一、MeanShift算法
meanshift算法本是机器学习中聚类算法中的一个算法,就是一种无监督分类算法,就是把图像的所有像素点看成一个个没有标签的样本数据,然后用探索这些样本数据的内部规律,把所有样本自动分成若干个类别,实现自动聚类。如果我们对机器学习算法中的聚类算法比较熟悉,那就很容易理解meanshift算法。但这个算法的亮点是用在图像处理中,这个算法搭配canny算法可以得到效果更加好的边缘检测效果;搭配分水岭算法可以得到更好的图像分割效果;搭配轮廓检测函