- 博客(2)
- 收藏
- 关注
原创 使用股票主力资金流向数据对股票价格进行预测,使用GRU
从相邻时间步的隐藏变量Ht和Ht-1之间的关系可知,这些变量捕获并保留了序列直到其当前时间步的历史信息,就如当前时间步下神经网络的状态或记忆,因此这样的隐藏变量被称为隐状态(hidden state)。由于在当前时间步中,隐状态使用的定义与前一个时间步中使用的定义相同,因此计算是循环的(recurrent)。与多层感知机不同的是,这里保存了前一个时间步的隐藏变量Ht-1,并引入了一个新的权重参数Whh∈Rh×h,来描述如何在当前时间步中使用前一个时间步的隐藏变量。全连接层的输出是当前时间步t的隐状态Ht。
2023-06-18 19:26:06 266 1
原创 使用前馈神经网络对mnist数据进行学习-基于深入浅出深度学习中的例子
基于深入浅出深度学习中的例子,将书上代码改为python3实现,并提高了一些效率(可能)首先加载数据,数据来源于书本github。
2023-03-24 23:40:30 277 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人