水鱼五笔编码练习系统

        水鱼五笔编码练习系统是我大三时的一个课程设计作品,因我小时候就学会了五笔,

再之身边会五笔的人没几个,想学五笔的人又没有简单、有效的五笔练习软件可以拿来用,

这让我萌生了写一款五笔练习软件的想法。个人觉得金山打字通、明天打字员等五笔练习软件,

很不适合五笔初学者,这更加强了我写这款软件的决心。

        因在交作业时,老师的电脑播放不了软件中的背景音乐和音效(因其没有装DirectX 10),

所以我将这款软件分成了两个版本:1)有声版    2)无声版

//有声版,下载地址如下:

http://download.csdn.net/download/friendan/4827980

//截图如下(详细情况,请下载完后,看压缩包中的说明文档)



//无声版,下载地址如下:

http://download.csdn.net/download/friendan/4827775

//截图如下(详细情况,请下载完后,看压缩包中的说明文档)



软件中难免有错误之处,望发现的朋友给我反馈一下,有空时我会更新改正它。

因我要忙于其它的事情,源代码没有进行优化,有兴趣的童鞋不妨将其完善。


//水鱼五笔有声版源码(VS2008+C#+Access 2007)  下载地址:

http://download.csdn.net/download/friendan/4828259

//水鱼五笔无声版源码(VS2008+C#+Access 2007)  下载地址:

http://download.csdn.net/download/friendan/4828346





### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

friendan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值