根据夹角求椭圆上的点



http://www.zybang.com/question/54757220677c3f49b6f7f28845a65a3c.html

设长轴为a,短轴为b(题设缺少椭圆圆心就是原点的条件)
则椭圆方程为:
x^2/a^2+y^2/b^b=1
设未知点与原点的连线与x轴正半轴的夹角为θ
则该点与原点的连线 直线方程为:
y=(tanθ) x
联立两个方程可解得两个坐标点,排除其中一个夹角为θ+180°的点
得到答案!



double a=92*2;
 double b=128*2;

 for (int i=0;i!=360;i+=10)
 {
  double _tan=tan(i*M_PI/180);

  qreal x=sqrt(1.0/((1.0/pow(_tan,2))*(1.0/pow(a,2))+(1.0/pow(b,2))));
  qreal y=sqrt(1.0/(1.0/(pow(a,2))+pow(_tan,2)*(1.0/pow(b,2))));
  

  if (i<90||i>270)
  {
   y=-y;
  }

  if (i>180)
  {
   x=-x;
  }

  myScene->addEllipse(x,y,5,5,QPen(Qt::red));
 }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值