http://www.zybang.com/question/54757220677c3f49b6f7f28845a65a3c.html
设长轴为a,短轴为b(题设缺少椭圆圆心就是原点的条件)
则椭圆方程为:
x^2/a^2+y^2/b^b=1
设未知点与原点的连线与x轴正半轴的夹角为θ
则该点与原点的连线 直线方程为:
y=(tanθ) x
联立两个方程可解得两个坐标点,排除其中一个夹角为θ+180°的点
得到答案!
double a=92*2;
double b=128*2;
for (int i=0;i!=360;i+=10)
{
double _tan=tan(i*M_PI/180);
qreal x=sqrt(1.0/((1.0/pow(_tan,2))*(1.0/pow(a,2))+(1.0/pow(b,2))));
qreal y=sqrt(1.0/(1.0/(pow(a,2))+pow(_tan,2)*(1.0/pow(b,2))));
if (i<90||i>270)
{
y=-y;
}
if (i>180)
{
x=-x;
}
myScene->addEllipse(x,y,5,5,QPen(Qt::red));
}