《大学数学3(第三版)》

第一章:行列式


第一节|方程组与行列式

二元线性方程组和二阶行列式
  • 二元线性方程组

{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 (1) \begin{cases} a_{11} x_{1} + a_{12} x_{2} = b_{1} \\ a_{21} x_{1} + a_{22} x_{2} = b_{2} \end{cases} \tag{1} {a11x1+a12x2=b1a21x1+a22x2=b2(1)

  • 二阶行列式

D = ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} a_{22} - a_{12} a_{21} D= a11a21a12a22 =a11a22a12a21

  • 二阶行列式 D D D称为二元线性方程组( 1 1 1)的系数行列式

第二节| n n n阶行列式

排列
  • 1 1 1 2 2 2 ⋯ \cdots n n n组成的一个有序数组称为一个 n n n级排列
逆序数
  • 在一个排列中,如果一对数的前后位置与大小顺序相反,则称它们为一个逆序
  • 一个排列中所有逆序的总数称为该排列的逆序数
  • 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列
  • n n n级排列 i 1 i 2 ⋯ i n i_{1} i_{2} \cdots i_{n} i1i2in的逆序数记为 τ ( i 1 i 2 ⋯ i n ) \tau(i_{1} i_{2} \cdots i_{n}) τ(i1i2in)
对换
  • 将一个排列中某两个数的位置互换,而其余的数不动,就得到另一个排列,这样一个变换称为一个对换

  • 对换改变排列的奇偶性

    • 证明
      • 先考虑相邻两个数的对换,设排列 ⋯ j k ⋯ \cdots jk \cdots jk j j j k k k对换变成排列 ⋯ k j ⋯ \cdots kj \cdots kj,排列中除 j j j k k k两个数本身顺序改变外,其他数的顺序并没有改变,而 j j j k k k之间,若 j < k j < k j<k,则经过对换后的排列的逆序数比原排列的逆序数增加 1 1 1,若 j > k j > k j>k,则经对换后的排列的逆序数比原排列的逆序数减少 1 1 1,因此,对换 j j j k k k的位置改变排列的奇偶性
      • 再看一般情况,设排列 ⋯ j i 1 i 2 ⋯ i m k ⋯ \cdots j i_{1} i_{2} \cdots i_{m} k \cdots ji1i2imk,经 j j j k k k对换变成排列 ⋯ k i 1 i 2 ⋯ i m j ⋯ \cdots k i_{1} i_{2} \cdots i_{m} j \cdots ki1i2imj,先对原排列施行 m m m次相邻两个数的对换,原排列变为 ⋯ j k i 1 i 2 ⋯ i m ⋯ \cdots jk i_{1} i_{2} \cdots i_{m} \cdots jki1i2im,再经过 m + 1 m + 1 m+1次相邻两个数的对换,原排列变为 ⋯ k i 1 i 2 ⋯ i m j ⋯ \cdots k i_{1} i_{2} \cdots i_{m} j \cdots ki1i2imj,因为相邻两个数的对换改变排列的奇偶性,共施行了 2 m + 1 2m + 1 2m+1次相邻两个数的对换,于是改变了排列的奇偶性
  • n ( ≥ 2 ) n (\geq 2) n(2)级排列中,奇偶排列各占一半,即各有 n ! 2 \cfrac{n!}{2} 2n!

例题 1 1 1
  • 问题:求排列 n   ( n − 1 ) ⋯ 3   2   1 n \ (n - 1) \cdots 3 \ 2 \ 1 n (n1)3 2 1的逆序数,并讨论其奇偶性
  • 解答
    • τ ( n   ( n − 1 ) ⋯ 3   2   1 ) = ( n − 1 ) + ( n − 2 ) + ⋯ + 3 + 2 + 1 = n ( n − 1 ) 2 \tau(n \ (n - 1) \cdots 3 \ 2 \ 1) = (n - 1) + (n - 2) + \cdots + 3 + 2 + 1 = \cfrac{n (n - 1)}{2} τ(n (n1)3 2 1)=(n1)+(n2)++3+2+1=2n(n1),当 n = 4 k n = 4k n=4k 4 k + 1 4k + 1 4k+1时,该排列是偶排列,当 n = 4 k + 2 n = 4k + 2 n=4k+2 4 k + 3 4k + 3 4k+3时,该排列是奇排列
n n n阶行列式

D = ∑ ( j 1 j 2 ⋯ j n ) ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n D = \sum\limits_{(j_{1} j_{2} \cdots j_{n})}{(-1)^{\tau(j_{1} j_{2} \cdots j_{n})} a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}}} D=(j1j2jn)(1)τ(j1j2jn)a1j1a2j2anjn

  • 也可写成

D = ∑ ( j 1 j 2 ⋯ j n ) ( − 1 ) τ ( i 1 i 2 ⋯ i n ) + τ ( j 1 j 2 ⋯ j n ) a i 1 j 1 a i 2 j 2 ⋯ a i n j n D = \sum\limits_{(j_{1} j_{2} \cdots j_{n})}{(-1)^{\tau(i_{1} i_{2} \cdots i_{n}) + \tau(j_{1} j_{2} \cdots j_{n})} a_{i_{1} j_{1}} a_{i_{2} j_{2}} \cdots a_{i_{n} j_{n}}} D=(j1j2jn)(1)τ(i1i2in)+τ(j1j2jn)ai1j1ai2j2ainjn

    • 证明
      • 将项 a i 1 j 1 a i 2 j 2 ⋯ a i n j n a_{i_{1} j_{1}} a_{i_{2} j_{2}} \cdots a_{i_{n} j_{n}} ai1j1ai2j2ainjn经一系列元素对换排成 a 1 j 1 ′ a 2 j 2 ′ ⋯ a n j n ′ a_{1 j_{1}^{'}} a_{2 j_{2}^{'}} \cdots a_{n j_{n}^{'}} a1j1a2j2anjn,每作一次元素对换,相应的行下标和列下标所成排列也作了一次对换,因此逆序数之和奇偶性不变,于是

∑ ( j 1 j 2 ⋯ j n ) ( − 1 ) τ ( i 1 i 2 ⋯ i n ) + τ ( j 1 j 2 ⋯ j n ) a i 1 j 1 a i 2 j 2 ⋯ a i n j n = ∑ ( j 1 ′ j 2 ′ ⋯ j n ′ ) ( − 1 ) τ ( j 1 ′ j 2 ′ ⋯ j n ′ ) a 1 j 1 ′ a 2 j 2 ′ ⋯ a n j n ′ \sum\limits_{(j_{1} j_{2} \cdots j_{n})}{(-1)^{\tau(i_{1} i_{2} \cdots i_{n}) + \tau(j_{1} j_{2} \cdots j_{n})} a_{i_{1} j_{1}} a_{i_{2} j_{2}} \cdots a_{i_{n} j_{n}}} = \sum\limits_{(j_{1}^{'} j_{2}^{'} \cdots j_{n}^{'})}{(-1)^{\tau(j_{1}^{'} j_{2}^{'} \cdots j_{n}^{'})} a_{1 j_{1}^{'}} a_{2 j_{2}^{'}} \cdots a_{n j_{n}^{'}}} (j1j2jn)(1)τ(i1i2in)+τ(j1j2jn)ai1j1ai2j2ainjn=(j1j2jn)(1)τ(j1j2jn)a1j1a2j2anjn


第三节|行列式的性质和计算

性质 1 1 1

D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = D T = ∣ a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋮ a 1 n a 2 n ⋯ a n n ∣ D= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} = D^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \\ \end{vmatrix} D= a11a21an1a12a22an2a1na2nann =DT= a11a12a1na21a22a2nan1an2ann

  • 证明
    • D D D中位于第 i i i行,第 j j j列的元素 a i j a_{ij} aij D T D^{T} DT中位于第 j j j行,第 i i i

D T = ∣ b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋮ b n 1 b n 2 ⋯ b n n ∣ D^{T} = \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \\ \end{vmatrix} DT= b11b21bn1b12b22bn2b1nb2nbnn

    • 则有 b i j = a j i b_{ij} = a_{ji} bij=aji i i i j = 1 j = 1 j=1 2 2 2 ⋯ \cdots n n n

D T = ∑ ( j 1 j 2 ⋯ j n ) ( − 1 ) τ ( j 1 j 2 ⋯ j n ) b 1 j 1 b 2 j 2 ⋯ b n j n = ∑ ( j 1 j 2 ⋯ j n ) ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a j 1 1 a j 2 2 ⋯ a j n n = D \begin{aligned} D^{T} &= \sum_{(j_{1}j_{2} \cdots j_{n})}(-1)^{\tau(j_{1}j_{2} \cdots j_{n})}b_{1j_{1}}b_{2j_{2}} \cdots b_{nj_{n}} \\ &= \sum_{(j_{1}j_{2} \cdots j_{n})}(-1)^{\tau(j_{1}j_{2} \cdots j_{n})}a_{j_{1}1}a_{j_{2}2} \cdots a_{j_{n}n} \\ &= D \end{aligned} DT=(j1j2jn)(1)τ(j1j2jn)b1j1b2j2bnjn=(j1j2jn)(1)τ(j1j2jn)aj11aj22ajnn=D

性质 2 2 2:互换 n n n阶行列式的任意两行(列),行列式仅改变符号
  • 证明
    • 设行列式

D = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a k 1 a k 2 ⋯ a k n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} D= a11ai1ak1an1a12ai2ak2an2a1nainaknann

    • 交换 D D D的第 i i i行和第 k k k行,得行列式

D 1 = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a k 1 a k 2 ⋯ a k n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D_{1} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} D1= a11ak1ai1an1a12ak2ai2an2a1naknainann

    • D D D中任意一项 a 1 j 1 ⋯ a i j i ⋯ a k j k ⋯ a n j n a_{1j_{1}} \cdots a_{ij_{i}} \cdots a_{kj_{k}} \cdots a_{nj_{n}} a1j1aijiakjkanjn也是 D 1 D_{1} D1中的一项 a 1 j 1 ⋯ a k j k ⋯ a i j i ⋯ a n j n a_{1j_{1}} \cdots a_{kj_{k}} \cdots a_{ij_{i}} \cdots a_{nj_{n}} a1j1akjkaijianjn,其中 a k j k a_{kj_{k}} akjk D 1 D_{1} D1中第 i i i行第 j k j_{k} jk列元素, a i j i a_{ij_{i}} aiji D 1 D_{1} D1中第 k k k行第 j i j_{i} ji列元素
    • a 1 j 1 ⋯ a i j i ⋯ a k j k ⋯ a n j n a_{1j_{1}} \cdots a_{ij_{i}} \cdots a_{kj_{k}} \cdots a_{nj_{n}} a1j1aijiakjkanjn D D D中的符号为 ( − 1 ) τ ( j 1 ⋯ j i ⋯ j k ⋯ j n ) (-1)^{\tau(j_{1} \cdots j_{i} \cdots j_{k} \cdots j_{n})} (1)τ(j1jijkjn),项 a 1 j 1 ⋯ a k j k ⋯ a i j i ⋯ a n j n a_{1j_{1}} \cdots a_{kj_{k}} \cdots a_{ij_{i}} \cdots a_{nj_{n}} a1j1akjkaijianjn D 1 D_{1} D1中的符号为 ( − 1 ) τ ( j 1 ⋯ j k ⋯ j i ⋯ j n ) (-1)^{\tau(j_{1} \cdots j_{k} \cdots j_{i} \cdots j_{n})} (1)τ(j1jkjijn)

( − 1 ) τ ( j 1 ⋯ j i ⋯ j k ⋯ j n ) = − ( − 1 ) τ ( j 1 ⋯ j k ⋯ j i ⋯ j n ) (-1)^{\tau(j_{1} \cdots j_{i} \cdots j_{k} \cdots j_{n})} = -(-1)^{\tau(j_{1} \cdots j_{k} \cdots j_{i} \cdots j_{n})} (1)τ(j1jijkjn)=(1)τ(j1jkjijn)

    • 因此 D = − D 1 D = -D_{1} D=D1
推论 1 1 1:若行列式中某两行(列)的元素对应相等,则行列式为零
性质 3 3 3

∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ k a i 1 k a i 2 ⋯ k a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = k ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ ka_{i1} & ka_{i2} & \cdots & ka_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} a11kai1an1a12kai2an2a1nkainann =k a11ai1an1a12ai2an2a1nainann

  • 证明

D = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ , D 1 = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ k a i 1 k a i 2 ⋯ k a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} , D_{1} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ ka_{i1} & ka_{i2} & \cdots & ka_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} D= a11ai1an1a12ai2an2a1nainann ,D1= a11kai1an1a12kai2an2a1nkainann

D 1 = ∑ ( j 1 ⋯ j i ⋯ j n ) ( − 1 ) τ ( j 1 ⋯ j i ⋯ j n ) a 1 j 1 ⋯ k a i j i ⋯ a n j n = k ∑ ( j 1 ⋯ j i ⋯ j n ) ( − 1 ) τ ( j 1 ⋯ j i ⋯ j n ) a 1 j 1 ⋯ a i j i ⋯ a n j n = k D \begin{aligned} D_{1} &= \sum_{(j_{1} \cdots j_{i} \cdots j_{n})}(-1)^{\tau(j_{1} \cdots j_{i} \cdots j_{n})}a_{1j_{1}} \cdots ka_{ij_{i}} \cdots a_{nj_{n}} \\ &= k\sum_{(j_{1} \cdots j_{i} \cdots j_{n})}(-1)^{\tau(j_{1} \cdots j_{i} \cdots j_{n})}a_{1j_{1}} \cdots a_{ij_{i}} \cdots a_{nj_{n}} \\ &= kD \end{aligned} D1=(j1jijn)(1)τ(j1jijn)a1j1kaijianjn=k(j1jijn)(1)τ(j1jijn)a1j1aijianjn=kD

推论 2 2 2:若行列式的两行(列)的元素对应成比例,则该行列式为 0 0 0
性质 4 4 4

∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 + a i 1 ′ a i 2 + a i 2 ′ ⋯ a i n + a i n ′ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 ′ a i 2 ′ ⋯ a i n ′ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} + a_{i1}^{'} & a_{i2} + a_{i2}^{'} & \cdots & a_{in} + a_{in}^{'} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1}^{'} & a_{i2}^{'} & \cdots & a_{in}^{'} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} a11ai1+ai1an1a12ai2+ai2an2a1nain+ainann = a11ai1an1a12ai2an2a1nainann + a11ai1an1a12ai2an2a1nainann

  • 证明

D = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 + a i 1 ′ a i 2 + a i 2 ′ ⋯ a i n + a i n ′ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} + a_{i1}^{'} & a_{i2} + a_{i2}^{'} & \cdots & a_{in} + a_{in}^{'} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} D= a11ai1+ai1an1a12ai2+ai2an2a1nain+ainann

D 1 = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ , D 2 = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 ′ a i 2 ′ ⋯ a i n ′ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D_{1} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} , D_{2} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1}^{'} & a_{i2}^{'} & \cdots & a_{in}^{'} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} D1= a11ai1an1a12ai2an2a1nainann ,D2= a11ai1an1a12ai2an2a1nainann

D = ∑ ( j 1 ⋯ j i ⋯ j n ) ( − 1 ) τ ( j 1 ⋯ j i ⋯ j n ) a 1 j 1 ⋯ ( a i j i + a i j i ′ ) ⋯ a n j n = ∑ ( j 1 ⋯ j i ⋯ j n ) ( − 1 ) τ ( j 1 ⋯ j i ⋯ j n ) a 1 j 1 ⋯ a i j i ⋯ a n j n + ∑ ( j 1 ⋯ j i ⋯ j n ) ( − 1 ) τ ( j 1 ⋯ j i ⋯ j n ) a 1 j 1 ⋯ a i j i ′ ⋯ a n j n = D 1 + D 2 \begin{aligned} D &= \sum_{(j_{1} \cdots j_{i} \cdots j_{n})}(-1)^{\tau(j_{1} \cdots j_{i} \cdots j_{n})}a_{1j_{1}} \cdots (a_{ij_{i}} + a_{ij_{i}}^{'}) \cdots a_{nj_{n}} \\ &= \sum_{(j_{1} \cdots j_{i} \cdots j_{n})}(-1)^{\tau(j_{1} \cdots j_{i} \cdots j_{n})}a_{1j_{1}} \cdots a_{ij_{i}} \cdots a_{nj_{n}} + \sum_{(j_{1} \cdots j_{i} \cdots j_{n})}(-1)^{\tau(j_{1} \cdots j_{i} \cdots j_{n})}a_{1j_{1}} \cdots a_{ij_{i}}^{'} \cdots a_{nj_{n}} \\ &= D_{1} + D_{2} \end{aligned} D=(j1jijn)(1)τ(j1jijn)a1j1(aiji+aiji)anjn=(j1jijn)(1)τ(j1jijn)a1j1aijianjn+(j1jijn)(1)τ(j1jijn)a1j1aijianjn=D1+D2

性质 5 5 5:把行列式的某行(列)的各元素乘 k k k后加到另一行(列)的对应元素上,行列式的值不变
例题 1 1 1
  • 问题:计算 n n n阶行列式

∣ a b b ⋯ b b a b ⋯ b b b a ⋯ b ⋮ ⋮ ⋮ ⋮ b b b ⋯ a ∣ \begin{vmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \cdots & a \end{vmatrix} abbbbabbbbabbbba

  • 解法一:

∣ a b b ⋯ b b a b ⋯ b b b a ⋯ b ⋮ ⋮ ⋮ ⋮ b b b ⋯ a ∣ = ∣ a + ( n − 1 ) b b b ⋯ b a + ( n − 1 ) b a b ⋯ b a + ( n − 1 ) b b a ⋯ b ⋮ ⋮ ⋮ ⋮ a + ( n − 1 ) b b b ⋯ a ∣ = [ a + ( n − 1 ) b ] ∣ 1 b b ⋯ b 0 a − b 0 ⋯ 0 0 0 a − b ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ a − b ∣ = [ a + ( n − 1 ) b ] ( a − b ) n − 1 \begin{vmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \cdots & a \end{vmatrix} = \begin{vmatrix} a + (n - 1)b & b & b & \cdots & b \\ a + (n - 1)b & a & b & \cdots & b \\ a + (n - 1)b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & & \vdots \\ a + (n - 1)b & b & b & \cdots & a \end{vmatrix} = [a + (n - 1)b] \begin{vmatrix} 1 & b & b & \cdots & b \\ 0 & a - b & 0 & \cdots & 0 \\ 0 & 0 & a - b & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a - b \end{vmatrix} = [a + (n - 1)b](a - b)^{n - 1} abbbbabbbbabbbba = a+(n1)ba+(n1)ba+(n1)ba+(n1)bbabbbbabbbba =[a+(n1)b] 1000bab00b0ab0b00ab =[a+(n1)b](ab)n1

  • 解法二:

∣ a b b ⋯ b b a b ⋯ b b b a ⋯ b ⋮ ⋮ ⋮ ⋮ b b b ⋯ a ∣ = ∣ a b b ⋯ b b − a a − b 0 ⋯ 0 b − a 0 a − b ⋯ 0 ⋮ ⋮ ⋮ ⋮ b − a 0 0 ⋯ a − b ∣ = ∣ a + ( n − 1 ) b b b ⋯ b 0 a − b 0 ⋯ 0 0 0 a − b ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ a − b ∣ = [ a + ( n − 1 ) b ] ( a − b ) n − 1 \begin{vmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \cdots & a \end{vmatrix} = \begin{vmatrix} a & b & b & \cdots & b \\ b - a & a - b & 0 & \cdots & 0 \\ b - a & 0 & a - b & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ b - a & 0 & 0 & \cdots & a - b \end{vmatrix} = \begin{vmatrix} a + (n - 1)b & b & b & \cdots & b \\ 0 & a - b & 0 & \cdots & 0 \\ 0 & 0 & a - b & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a - b \end{vmatrix} = [a + (n - 1)b](a - b)^{n - 1} abbbbabbbbabbbba = ababababab00b0ab0b00ab = a+(n1)b000bab00b0ab0b00ab =[a+(n1)b](ab)n1

对称行列式和反对称行列式
  • 在行列式中,若 a i j = a j i a_{ij} = a_{ji} aij=aji,则称 D D D为对称行列式

  • 在行列式中,若 a i j = − a j i a_{ij} = -a_{ji} aij=aji,则称 D D D为反对称行列式

  • 反对称行列式中主对角线上的元素等于 0 0 0

例题 2 2 2
  • 问题:证明奇数阶反对称行列式的值等于 0 0 0

  • 解答

    • D D D是反对称行列式, D D D可以写成

D = ∣ 0 a 12 a 13 ⋯ a 1 n − a 12 0 a 23 ⋯ a 2 n − a 13 − a 23 0 ⋯ a 3 n ⋮ ⋮ ⋮ ⋮ − a 1 n − a 2 n − a 3 n ⋯ 0 ∣ D = \begin{vmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ -a_{12} & 0 & a_{23} & \cdots & a_{2n} \\ -a_{13} & -a_{23} & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ -a_{1n} & -a_{2n} & -a_{3n} & \cdots & 0 \end{vmatrix} D= 0a12a13a1na120a23a2na13a230a3na1na2na3n0

D = D T = ∣ 0 − a 12 − a 13 ⋯ − a 1 n a 12 0 − a 23 ⋯ − a 2 n a 13 a 23 0 ⋯ − a 3 n ⋮ ⋮ ⋮ ⋮ a 1 n a 2 n a 3 n ⋯ 0 ∣ = ( − 1 ) n ∣ 0 a 12 a 13 ⋯ a 1 n − a 12 0 a 23 ⋯ a 2 n − a 13 − a 23 0 ⋯ a 3 n ⋮ ⋮ ⋮ ⋮ − a 1 n − a 2 n − a 3 n ⋯ 0 ∣ = ( − 1 ) n D D = D^{T} = \begin{vmatrix} 0 & -a_{12} & -a_{13} & \cdots & -a_{1n} \\ a_{12} & 0 & -a_{23} & \cdots & -a_{2n} \\ a_{13} & a_{23} & 0 & \cdots & -a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & a_{3n} & \cdots & 0 \end{vmatrix} = (-1)^{n} \begin{vmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ -a_{12} & 0 & a_{23} & \cdots & a_{2n} \\ -a_{13} & -a_{23} & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ -a_{1n} & -a_{2n} & -a_{3n} & \cdots & 0 \end{vmatrix} = (-1)^{n}D D=DT= 0a12a13a1na120a23a2na13a230a3na1na2na3n0 =(1)n 0a12a13a1na120a23a2na13a230a3na1na2na3n0 =(1)nD

    • n n n为奇数,故 D = 0 D = 0 D=0

  • 10
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
离散数学第三方世昌pdf是方世昌所著的一本离散数学教材的电子本。该书是离散数学领域的经典教材之一,已经出多个本。离散数学数学的一个分支,主要研究离散对象和离散结构的性质、关系及其应用。 方世昌是中国科学技术大学的一位著名数学家和计算机科学家,他在离散数学方面的研究和教学经验丰富。他的教材以简洁明了的语言和系统完备的内容著称,深受学生和教师的喜爱。 离散数学第三方世昌pdf的内容一般包括以下几个方面:集合论、关系、图论、布尔代数、函数、数论、代数结构等。每个主题都有详细的介绍、定义、定理和例题,适合初学者和进阶学习者使用。该教材通常用于大学的计算机科学、数学以及其它相关专业的离散数学课程中。 使用离散数学第三方世昌pdf,可以帮助学生提高对离散数学概念的理解和运用能力。读者可以利用该教材进行自主学习,对照书中的例题进行练习,从而加深对概念和算法的理解。此外,教师也可以将该教材作为课堂教学的参考资料,结合自己的教学经验,设计合适的教学活动和作业。 总之,离散数学第三方世昌pdf 是一本经典的离散数学教材,对于学习离散数学的人而言,它是一本非常有价值的资料。无论是初学者还是进阶学习者,都可以从中受益匪浅。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值