2.1|上下文无关文法概述
上下文无关文法的形式化定义
- 上下文无关文法是一个 4 4 4元组 ( V , Σ , R , S ) (V , \Sigma , R , S) (V,Σ,R,S),且
- V V V是一个有穷集合,称为变元集
- Σ \Sigma Σ是一个与 V V V不相交的有穷集合,称为终结符集
- R R R是一个有穷规则集,每条规则由一个变元和一个由变元及终结符组成的字符串构成
- S ∈ V S \in V S∈V是起始变元
乔姆斯基范式
- 称一个上下文无关文法为乔姆斯基范式,如果它的每一个规则具有如下形式
A → B C A → a A \rightarrow BC \\ A \rightarrow a A→BCA→a
- 其中, a a a是任意的终结符, A A A、 B B B和 C C C是任意的变元,且 B B