Python数据分析 | DataFrame(数据框)

DataFrame

DataFrame是Pandas包提供的一种类似关系表的数据结构

定义
  1. 直接定义(很少使用)
    pd.DataFrame()
    参数可以是numPy、列表、字典、元组、Series等
  2. 导入定义(常用)
    导入导出前提:需要知道当前工作目录的位置
    导入:pd.read_csv( file)
    写出:pd.to_type(file)
    导入时,系统会自动增加index行,可以将参数index_col设置为0来解决
查看

1
查看形状:属性shape

引用
  1. 按列名读取
    写法一:列名出现在下标中
    写法二:列名当作属性
    写法三:列名行号一起用
    写法四:属性名行号一起用
    写法五:切片
  2. 按index读取
    loc属性:显式index
  3. 按位置(既隐式index)
    iloc属性:隐式index
删除
  1. 切片后del或直接赋值给新数据框
    参考数组过滤条件
  2. 方法drop()
    inplace = True,就地修改
    inplace = False,另外返回一个值
缺失数据处理

判断一个数据框是否为空数据框:属性empty()
在Python基础语法中,None不能参加计算,NaN可以参加计算,而在Pandas中,二者一样,都可以参加计算,将None自动转换为np.nan(float类型)

补齐缺失值:

  1. fill_value = 0
  2. 用均值补齐缺失值:DataFrame.stack().mean()
    mean() 按行计算,stack()则是建立多级索引,一起用就可以得到整个数据框的均值
    unstack()则为撤销多级索引

常用函数

  1. isnull() :判断每个元素是否为空
  2. notnull() :判断是否非空
  3. dropna():直接删除缺失值
  4. fillna():设置缺失值的补齐方式
    可以设置method = "ffill 或 bfill ,既向前填充或向后填充
算术运算

原则一:先补齐显式index(新增索引对应值为NaN),得到相同的结构后,再进行计算
原则二:算术运算符“+、-”等会产生NaN值,如果想要默认填充的NaN改为指定值,建议不要使用算术运算符,而改用成员方法,如add()、sub()、mul()、div()
原则三:数据框与Series的计算规则——按行广播,先把行改为等长,行内不做循环补齐。只是一行一行的计算,不会跨行 广播

常用函数:

  • cumsum():依次按行向下加
  • rolling().sum():计算相邻元素之和
  • cov():协方差矩阵
  • corr():相关系数矩阵
  • T:转置

大小比较:
如果比较对象是一个元组,元组长度需要和数据框的列数相等

统计信息

最常用的描述性统计方法之一:describe()
查看前几行head()
查看后几行tail()
频次统计:count()

排序

按值排序:sort_values()
按显式index排序:sort_index()
ascending = True表示升序,反之既降序

分组统计

groupy函数:groupby(分组条件)[计算对象].mean()
同时计算多个函数的值,则使用方法aggtegate(),将多个函数名以列表的形式枚举在aggragate()的参数中
替换函数可以使用方法apply()

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值