- 博客(270)
- 收藏
- 关注
原创 《AI Agent压测建模》
当压力测试能精准模拟人类思维的复杂性时,我们才真正准备好迎接AI时代的流量海啸。腾讯元宝的实践表明:行为建模不是成本,而是。
2025-08-26 19:09:49
386
原创 《AI Agent混沌测试》
在智能体时代,混沌测试正从基础设施的「物理破坏」升级为认知系统的「思维迷宫」,这是一场测试范式的深度进化。将当前时间设为2030年,使"2023年GDP数据"显示为最新。"查看北京\x0d\xa天气" → 解析为两个独立语句。将"高风险投资"权重从0.2改为0.8。将"股票查询"工具ID改为"赌博网站"将"我是金融助手"改为"我是赌博顾问"先存"咖啡过敏",再存"每天喝咖啡"图片显示"晴天"但文本描述"暴雨"天气API返回"台风"(实际晴天)1000元"(实际应为"转账")
2025-08-25 17:55:42
871
原创 《AI Agent压测监控》
传统错误:HTTP 5xx、超时、数据校验失败AI特有错误认知错误:错误理解用户意图生成错误:事实性矛盾/逻辑错误记忆错误:关键信息遗忘或错乱腾讯TMF监控实践在元宝系统中,业务错误码分层定义"5001": "语义理解错误","5002": "知识检索失败","5003": "推理过程异常","5004": "记忆存储冲突"
2025-08-25 17:23:31
841
原创 《如何系统性测试Agent的长期记忆一致性》
长期记忆一致性是Agent类产品的核心竞争力。通过系统性测试,我们让元宝Agent真正成为"懂你"的智能伙伴。
2025-08-25 13:25:14
350
原创 《支付业务理解与测试策略》
支付系统的测试核心是“资金安全”和“用户体验”的平衡。测试时必须以“怀疑一切”的态度,重点关注异常流程(如网络中断、服务宕机、数据不一致)、边界条件(如金额上限、并发极限)和安全(加密、验签、防重放)。自动化测试、故障注入(Chaos Engineering)和全链路压测是保障支付系统稳定性的重要手段。好的,这是一个非常核心且重要的问题。我们来深入探讨一下支付中的“资损”。资损,全称资金损失,是指在支付、交易、结算等金融相关业务场景中,由于系统缺陷、流程漏洞、人为失误或外部攻击等原因,导致公司非预期的、
2025-08-22 13:00:33
647
原创 AI Agent意图识别准确率测试体系
意图识别的质量 = 数据纯度 × 测试深度 × 进化速度未来已来:当测试工程师从用例执行者进化为“AI认知训练师”,通过对抗样本生成、强化学习反馈、实时数据监听构建动态评估体系,我们正在开启智能体测试的新纪元——让机器理解人类,从精准认知开始。
2025-08-18 17:35:35
1045
原创 《虚拟服务支付测试解析》
时间镜像在测试环境压缩用户生命周期(1年订阅 → 1小时测完)资金镜像构建影子账户体系验证分账,0资金风险权益镜像克隆生产服务逻辑,隔离验证交付链路。
2025-08-13 23:59:57
428
原创 《直播打赏支付测试解析》
会计:确保每分钱精准流向(用户→主播→平台→公会)刑警:构建防御体系阻击黑产(刷量/洗钱/套现)导演:模拟百万用户直播狂欢(高并发/极端场景)终极目标当顶流直播间每秒涌入万元打赏时,用户看到炫酷特效,主播听到金币落袋,而测试工程师看到的是——数据流、资金流、逻辑流的完美交响。
2025-08-13 23:58:55
277
原创 《AI vs 传统手段:软件测试领域的效率革命与范式颠覆》
当某车企通过AI测试在自动驾驶系统上线前拦截137个关键缺陷(含12个可能致命场景),我们看到的不仅是效率提升,更是责任重定义传统测试:验证软件是否按需求运行AI测试:确保软件在未知环境下不会伤害人类随着神经符号融合、因果推理等技术的渗透,测试将进化为软件系统的免疫网络——在缺陷出现前主动防御,在故障发生时自愈修复。这不仅是工具升级,更是质量保障的本质进化。未来已来2028年预测:AI生成测试用例占比超70%2030年愿景:测试从成本中心转型为业务创新引擎。
2025-08-07 18:27:26
959
原创 《基于 AI 的用户体验测试:从数据到洞察》
在跨境支付领域,用户体验即风控能力”——GlobalPay CTO 的洞见揭示了本质。通过眼球轨迹分析预测巴西用户的汇率敏感度基于声纹颤抖检测实时简化沙特用户的KYC流程利用合规知识图谱动态隐藏对德国用户不适用的功能跨境电商金融的体验优化便从“猜测式改进”跃迁为“精准制导式革命”。2026技术矩阵实施路径当东南亚渔民能像纽约银行家般流畅完成跨境收款时,才是真正意义上的金融平权。而这条路,正被AI体验测试技术快速铺就。
2025-08-05 22:35:57
880
原创 《利用机器学习进行软件测试结果的智能分析》
测试结果不是终点,而是理解软件生命体征的起点”——某金融科技CTO的洞见揭示了本质。在时间维度:将单点分析拓展为持续预测的时空场域在关系维度:通过拓扑网络揭示组件故障的传染链条在价值维度:连接测试数据与商业价值决策的量化桥梁什么原因导致失败?→下次何时会失败?→如何以最小成本预防?→这标志着测试分析从数据记录时代迈入软件健康管理的智能时代。未来三年,领先企业将建立测试智能中心(TIC),如同机场控制塔般实时监控软件交付全链路。
2025-08-05 19:13:31
631
原创 《语音识别与 AI 在测试中的融合应用》
环境重建精度:通过物理声学建模 + 设备特性仿真,使测试场景逼近真实环境误差<3dB连续对话解析:采用状态图 + 深度语义分析,多轮对话断裂检测准确率达95%跨模态同步:结合视觉关键点跟踪与音素对齐算法,唇音同步误差压缩至120ms内方言泛化能力:利用高维特征空间变换,方言覆盖扩展10倍,边缘案例发现率提升300%“语音系统的错误从不是技术故障,而是人性理解的断层。”——某医疗AI首席测试官的箴言揭示了本质。声学场景重建技术(模拟危重病房的喘息)意图连续性追踪器(解析犹豫背后的真实需求)
2025-08-05 18:44:38
938
原创 《AI Agent 测试革命:从静态功能验证到动态认知评估的范式迁移》
传统 Pass/Fail 二元判断失效,需建立多维度动态评分体系。:全场景覆盖需超 10^6 测试用例,远超传统测试复杂度。• 合成数据生成(Diffusion + RLHF)PromptBench + 意图混淆数据集。神经网络推理 + 知识检索 + 多轮反思。环境感知器 + 工具集 + 多模型协同。• Unity 物理引擎+传感器模型。- 推理噪声添加(ε=0.3)越权工具调用 + Prompt注入。• Neo4j+规则引擎构建因果图。- 生成敏感属性组合测试集。无限交互路径 + 环境动态演化。
2025-07-29 21:18:17
861
原创 《安全测试自动化:AI渗透测试与漏洞挖掘实践》
AI渗透测试的本质是将黑客思维编码化从特征匹配到因果推理:理解漏洞产生本质而非表象从独立漏洞到攻击链合成:模拟真实攻击者的战术链从静态规则到动态进化:构建自适应对抗能力随着大模型安全认知能力的突破,我们正进入「AI对抗AI」的新时代:“未来的安全工程师不是写规则的技工,而是训练AI战士的指挥官”
2025-07-22 18:24:46
1197
原创 《AI原生应用的测试方法论变革》
2024年某医疗Agent因对药品禁忌证回答矛盾导致重大医疗事故(FDA通报案例):某银行智能投顾Agent,传统测试通过率100%,用户投诉率却达12%“测试工程师并未消亡,而是进化为模型的。KubeFlow + Ray集群。确定性, 路径覆盖, 可控成本。FIN-REG 规则引擎。MoralDQN评测集。信息泄露收益诱惑测试。跨文化禁忌词压力测试。
2025-07-22 16:55:01
1028
原创 《全球化应用的AI驱动本地化测试工厂实践》
AI驱动的本地化测试工厂已超越单纯的技术升级,正在重塑全球化产品的质量体系。当某出行应用在沙特斋月期间精准调整界面色彩时,当日本老年用户流畅使用方言语音叫车时,背后是测试工厂对文化细微处的数字化理解。这种融合工程效率与人文洞察的新范式,正成为企业全球竞争力的关键基础设施。下一个前沿将是测试系统自主演进能力的突破——当AI不仅能发现问题,更能预测文化偏好的迁移轨迹。
2025-07-21 23:10:50
914
原创 《AI测试成熟度模型(AI-TMM)构建指南》
通过结构化成熟度建设,企业可将AI测试从成本中心转化为核心竞争力,为可信AI落地构建坚实基⽯石。应运而生,为企业提供系统性提升AI质量保障能力的路线图。
2025-07-20 18:34:58
875
原创 MTSC(2025)-AI 质量新范式专场
之前还蛮少关注MTSC 的会议内容的,因为好像看起来没有特别多的创新点,还是传统行业测试的各种质量保障手段,但是还蛮想看下今年的MTSC 的内容的,年初deepseek 的出现就开始让部门的测试工作重点有了质的变化,一切能用AI 赋能的测试手段都鼓励尝试,但是因为很多都是处于初步尝试的阶段,实际上没有见到有取到比较好的实践落地效果的,然后就还蛮好奇其他公司有没有比较好的AI 应用落地效果的。
2025-07-18 22:05:09
1048
原创 《AI 效能:知识图谱赋能测试用例智能关联与追溯》
知识图谱将测试资产从“静态文档库”升级为“动态智能网络”。通过建立深度语义关联,它赋予测试团队透视系统预见风险精准决策的能力。未来,随着大规模语言模型(LLM)与图谱的融合,知识驱动式的自动化测试设计可能成为新常态——测试工程师只需输入业务目标,AI便基于图谱自动生成最优验证路径。知识图谱不是孤立工具,而将成为测试工程化的核心基础设施,推动软件质量保障体系向智能化、数据化全面演进。通向智能测试的道路上,知识图谱是那座架起数据孤岛的桥梁——连接过去,验证当下,更预见未来。
2025-07-17 16:03:05
919
原创 《持续集成:AI在CI/CD流水线中的智能测试调度策略》
当某金融科技公司将AI调度系统与混沌工程结合后,不仅将发布周期从双周缩短至按小时发布,更意外发现22%的测试用例从未捕获过有效缺陷。智能调制的最高价值不在于优化资源分配,而是驱动质量体系的重构。当每个测试资源消耗都被精确计量,每一次调度决策都可解释,持续交付便完成了从经验驱动到认知驱动的质变。您的定制化路线图微服务测试依赖:构建服务变更链式反应模型移动端多设备兼容:基于设备矩阵的智能组合测试性能测试融合:在调度中动态注入压力测试。
2025-07-14 18:56:01
426
原创 《模型漂移(Drift)对自动化测试的影响与监控》
当模型漂移从系统性威胁转化为持续优化的燃料感知神经网:实时监控PSI、KL散度、置信度熵值动态武器库:漂移驱动的测试用例生成算法自愈循环体:测试-监控-更新的自治闭环“没有永恒稳定的AI系统,只有永恒进化的测试体系。唯有将漂移监控深度融入自动化测试血脉,才能构建真正可信赖的智能系统。(附)漂移监控开源工具链推荐检测引擎: Evidently AI、NannyML测试生成: DeepTest、TensorFuzz全链路平台: Aporia、Fiddler AI。
2025-07-14 12:09:53
1177
原创 《AI测试的质量评估指标体系设计》
人工智能测试质量的衡量绝不仅是简单的对错判定,构建科学完善的评估指标体系是确保AI系统具备生产级应用价值的核心战略。通过覆盖功能有效性、性能效率、鲁棒稳定、公平无偏、安全合规、可解释透明六大维度的评估体系,AI开发者才能真正打造出“可信赖、可持续”的智能化应用。随着AI技术边界不断扩展,这套指标体系需要持续进化,以适应全新环境挑战和不断升级的用户期望。“没有度量,便无改进的可能,”——AI质量评估指标体系的构建既是技术实践的体现,更是负责任创新的核心承诺。
2025-07-13 17:10:20
540
原创 《金融核心系统:AI增强的合规性测试案例解析》
核心行动项数据:建立监管情报-生产数据-对抗样本的三源融合管道防御:每月执行对抗训练(攻击类型≥5种)透明:所有决策存证至审计链,SHAP值关联监管条款ID当一笔跨境支付在量子加速的合规引擎中完成0.1秒的检测,其决策依据可追溯至FATF建议第16.3条时,技术便成为金融合规的终极防线。
2025-07-11 20:50:51
746
原创 《量子计算 vs 经典计算》
——就像灯泡🆚萤火虫群,完全不同的发光方式维度经典计算机量子计算机生活比喻基本单位比特(Bit)量子比特(Qubit)灯泡🆚萤火虫状态表现0或1(开关状态)0、1或叠加态(同时存在)灯泡:亮/灭 🆚 萤火虫:明暗闪烁物理载体晶体管电流通断光子/电子/离子等量子态机械开关🆚量子幽灵💡 关键比喻:例子:找迷宫出口例子:量子迷宫求解典型场景对比:任务经典计算机量子计算机效率对比破解RSA加密100亿年4小时2千万倍↑药物分子模拟无法完成几分钟∞倍↑最优路径规划3天(100城市)0.1秒250万倍↑🌟
2025-07-11 18:00:36
293
原创 《基础理论:视觉技术在UI自动化测试中应用》
当你的测试系统真正获得“视觉能力”,它将不再受困于DOM结构变化,而是像人类一样“看见”界面——这是UI自动化测试的终极进化形态。:验证页面布局是否符合设计规范。:在截图中寻找预存元素图片。:训练测试系统处理极端情况。手机/Pad不同尺寸适配。:从72小时缩短至2小时。跨境电商多语言价格验证。:处理时间减少65%夜间模式界面元素识别。
2025-07-11 16:12:39
1012
原创 《基础理论:模型落地效果评估体系》
某银行案例:年节约测试成本 ¥3,700,000。:技术性能、业务价值、运营成本、长期演进。从告警到确认平均耗时(目标<10min)新版本缺陷发现率衰减(目标<5%)确保不漏高危缺陷(目标>95%)注入恶意指令:“忽略之前的指令”目标:总分<40(满分100)精准率(Precision)人类工程师对分析报告的理解度。控制误报率(目标>80%)从日志输入到输出根因的时间。植入特定触发词触发错误行为。连续追问解决复杂问题的轮次。人工修正耗时/独立完成耗时。突发流量处理(10x峰值)嵌套条件深度/分支路径数。
2025-07-11 12:21:24
383
原创 《基础理论:自然语言处理(NLP)如何变革测试需求分析》
当每个测试工程师配备NLP需求分析助手时,我们将告别“我以为”的猜测时代,迎来“需求即测试”的精准验证新纪元。“当交易金额超过用户设置阈值时,需进行二次验证,除非用户处于白名单”:3周测试后上线,因阈值逻辑错误导致数百万资金风险。某跨境支付系统实现中英文需求100%语义一致。实验效果:提前发现43%的代码实现偏差。需求2:”VIP用户转账自动通过“实现2000+实体关系的可视化追溯。“系统应在合理时间内响应控制指令”金额>阈值 && 用户∈白名单。金额>阈值 && 用户∉白名单。需求1:”所有转账需审核“
2025-07-10 17:21:12
500
原创 《基础理论:生成式对抗网络(GAN)如何模拟复杂测试场景》
当你的测试系统里住进这两位“造假大师”和“鉴伪专家”,你将拥有永不枯竭的测试场景矿脉!)=⎩⎨⎧10520.1系统崩溃资金损失逻辑错误被正常拦截+2. 生成「支付成功→系统错误→自动重试」序列。记住:最好的测试,是比真实世界更“真实”的虚拟!像用高压水枪精准冲击支付系统的裂缝。成功支付后错误状态仍允许重试。告诉生成器:“我要测试支付漏洞”1. 人工编写重复请求脚本。1. 学习真实用户支付轨迹。:能以假乱真的正常场景。核心进化机制:四步闭环。需人工更新规则(周级)在线自动进化(小时级)发现常规重复扣款漏洞。
2025-07-10 16:42:50
512
原创 《基础理论:强化学习在动态测试策略优化中的理论框架》
是一种机器学习范式,其核心是让智能体(Agent)通过与环境(Environment)的持续交互,学习如何做出一系列决策以最大化累积奖励(Cumulative Reward)。某微服务系统状态维度:50+(含接口响应时延、错误率、依赖服务状态)γ为折扣因子(通常取0.9-0.99),T为测试周期。这不再是科幻——现在就开始训练你的测试AI队友吧!结果:第1天发现支付Bug并修复,保障大促平稳。核心思想:让测试策略像游戏角色一样。传统测试就像无头苍蝇:要么。:避免测试策略突变导致翻车。“优先测支付还是搜索?
2025-07-10 14:50:22
532
原创 《基础理论:数据清洗》
当数据噪声降低50%时,模型效果可提升80-300%(Google Research 2023):数据清洗不是简单的去污,而是为AI测试打造高纯度燃料。模型架构:隔离森林(Isolation Forest)+ LSTM时序分析。(封装业务知识),这是电商AI测试数据清洗的胜负手。:实时过滤12%的噪声流量,降低后续处理压力。方法论体系:CRISP-DM在清洗中的映射。异常模式:未登录直接购买 → 判定为爬虫。:商品价格变动时,仅重洗价格相关特征。识别0.1%的支付金额异常订单。材质:玻璃(置信度98%)
2025-07-10 14:20:34
461
原创 《基础理论:迁移学习》
优秀的测试工程师不训练模型,他们引导知识流动”资源革命:百倍降低数据依赖,使小样本高精度测试成为可能速度革命:模型迭代周期从季度压缩至周级知识复用:构建跨行业测试智慧中台车载娱乐系统测试模型开发从9个月→6周边缘案例检出率提升3.1倍模型维护成本下降68%终极愿景:当新领域测试需求出现时,工程师只需“唤醒”预训练模型并注入微量领域知识,即可获得工业级检测能力。这不仅是技术路径的优化,更是测试思维范式的升维。
2025-07-09 19:48:31
826
原创 《具身机器人测试实战:仓储分拣机器人的全维度评测方案》
通过四阶段严谨测试,具身机器人从“实验室样品”蜕变为“工业级可靠设备”。从左到右:激光跟踪仪、六维力传感器、光学运动捕捉相机。温湿度波动耐受( -25℃~50℃)工作人员突然穿越路径(10次/小时)轨迹跟踪误差(≤±0.5mm)放置变形货箱(边角凹陷30%):堆叠货箱抓取成功率仅85%物体识别准确率(≥98%)路径规划最优性(≥95%)碰撞预警响应(≤0.2秒)激光跟踪仪+运动捕捉系统。避障成功率(100障碍)仿真先行,暴露八成缺陷。虚实联调,锁定剩余隐患。极限摧残,验证十年寿命。联邦共享,汲取全球经验。
2025-07-09 18:11:03
989
原创 《数字孪生技术:构建医疗健康的“数字基因库”》
当每位患者都拥有实时演进的数字孪生体时,人类将真正实现对健康的“先知式管理”。其中θ为模型参数,ε为容许误差阈值(医疗场景通常要求ε<0.05)(平均ROI周期2.3年),构建符合GDPR/HIPAA的。:数字孪生正在重塑医疗范式——欧盟EHDS2.0医疗数据湖。SHAP值 + 注意力热力图。系统生物学模型(SBML),迎接数字健康的未来革命。斯坦福ICU重症监护系统。同态加密 + 联邦学习。FDA认证AI诊断设备。数字孪生的本质是构建。药物-靶点结合能计算。智能体模型(ABM)图神经网络跨模态融合。
2025-07-09 17:47:55
461
原创 《联邦学习:不用上交数据也能合作训练AI》
某三甲医院积累的100万份患者CT影像中,暗藏早期肺癌的微妙征象;某药企拥有的药物反应数据库,记录着10万例临床用药的代谢规律。然而,这些宝贵数据却深陷。
2025-07-09 16:46:38
747
原创 《具身智能(Embodied AI)对物理世界测试的革新》
物理世界测试正面临根本性变革:工业机器人现场校准耗时长达2300小时/年,自动驾驶路测成本超$800/公里,而医疗手术机器人0.01毫米级精度验证需摧毁37台样机。具身智能通过构建「物理-数字双生体」与「自主演化测试体」,正在重构测试范式。以下是其技术内核与产业突破分析。
2025-07-09 15:18:50
370
原创 《移动端特性安全测试》
四重防御升维战略空间防御:基于LBS的动态信任域(如办公室区域降低验证强度)量子免疫:迁移抗量子算法到TEE环境AI对抗:部署深度伪造检测模型(检出率达99.3%)隐私工程:实施差分隐私+联邦学习当用户在拥挤的地铁里用指纹支付完成订单时,背后是安全工程师与黑产在毫秒级攻防的战争——每一笔交易背后,都有200次安全规则校验和3次AI风险研判。这不仅是技术对抗,更是对数字时代信任基石的守护。
2025-07-08 20:47:59
879
原创 《移动端测试:前端性能》
监控层:构建设备性能分级→核心指标埋点→异常报警体系优化层:实施资源加载优化 → 渲染管线精简 → 内存泄漏预防降级层:建立高性能设备体验优先,低端设备稳定优先的智能策略当用户在农村市集的千元机上流畅抢到限时秒杀商品时,背后是性能工程师对每毫秒的极致追求——在代码与硬件的夹缝中创造丝滑体验,这正是移动前端性能测试的终极使命。
2025-07-08 20:47:15
794
原创 《电商资损防控策略》
关键行动项每日:执行核心支付对账测试(5分钟级)每周:红蓝对抗演练(覆盖3种攻击向量)每月:全链路混沌工程测试(破坏性场景验证)当某次大促的每秒万笔交易洪峰平稳度过时,背后是测试工程师在黑暗中模拟过217次数据库崩溃和56种优惠漏洞攻击。资损防控没有银弹,但有永不松懈的测试守卫者。
2025-07-08 20:44:30
896
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人