转载:http://blog.csdn.net/wuzhekai1985/article/details/6718256
问题描述:多人排成一个队列,我们认为从低到高是正确的序列,但是总有部分人不遵守秩序。如果说,前面的人比后面的人高(两人身高一样认为是合适的),那么我们就认为这两个人是一对“捣乱分子”,比如说,现在存在一个序列:176, 178, 180, 170, 171
这些捣乱分子对为<176, 170>, <176, 171>, <178, 170>, <178, 171>, <180, 170>, <180, 171>,那么,现在给出一个整型序列,请找出这些捣乱分子对的个数(仅给出捣乱分子对的数目即可,不用具体的对)
思路:最简单的就是用两层循环,即考察每个元素,检查该元素后面的元素是否小于它,如果是就找到一个捣乱分子对。复杂度为O(n^2)。这道题的一种改进方案是用分治法,用到了归并排序的思想。我们可以将数组分成两部分,总的捣乱分子对为: 前半部分的捣乱分子对 + 后半部分的捣乱分子对 + X,这里的X为两部分合并中出现的捣乱分子对,什么情况下会出现呢?假设前半部分的元素范围为 A[from] 到A[mid],后半部分的元素范围为A[mid + 1] 到A[to],考虑前半部分的某元素A[i]和后半部分的某元素A[j],如果A[j] < A[i],由于两部分都是排好序的,因此捣乱分子对增加 mid - i + 1个,也就是说A[j]小于A[i], A[i+1].. A[mid],这个关系显然成立。
#include<iostream>
using namespace std;
int CalcAndMerge(int arr[],int left,int mid,int right);
int FindTrouble(int arr[],int left,int right);
int FindTrouble(int arr[],int left,int right)
{
if(left>=right)
return 0;
int mid = left+(right-left)/2;
return FindTrouble(arr,left,mid)+FindTrouble(arr,mid+1,right)+CalcAndMerge(arr,left,mid,right);
}
int CalcAndMerge(int arr[],int left,int mid,int right)
{
int left1=left,right1=mid,left2=mid+1,right2=right;
if(left1>right1 || left2>right2)
return 0;
int i=left1,j=left2;
int sum=0;
while(i<=right1 && j<=right2)
{
while(i<=right1 && arr[i]<=arr[j])
i++;
if(i<=right1)
{
sum+=right1-i+1;
j++;
}
}
//merge
i=left1;j=left2;
int *tmp=new int[right-left+1];
int t=0;
while(i<=right1 && j<=right2)
{
if(arr[i]<arr[j])
tmp[t++]=arr[i++];
else
tmp[t++]=arr[j++];
}
while(i<=right1)
tmp[t++]=arr[i++];
while(j<=right2)
tmp[t++]=arr[j++];
for(t=0,i=left;i<=right;t++,i++)
arr[i]=tmp[t];
return sum;
}
int main()
{
int arr[]={5,3,7,5,1,12,9,7,2,9,9,4,1,7,3,6,10,6};
int output = FindTrouble(arr,0,sizeof(arr)/sizeof(int)-1);
cout<<output<<endl;
return 0;
}