【12月学习进度12/31——特征提取】离散KL变换原理、实例以及matlab实现(转载)
转载自:离散KL变换原理、实例以及matlab实现从n维特征中选取m维特征,如何在信息损失最小的情况下选取特征(因为必然会删去n-m维特征),使得剩下的特征更加有利于分类,离散K-L变换(Karhunen-Loeve变换)就是常用的方法。引入设一个输入向量 xxx 。K-L变换的目的就是对原向量进行变换,组成新向量 yyy。该新向量的特征数比 xxx 少,各特征间不相关,因此关键就是要找到这样的变换矩阵。优缺点优点:变换在均方误差最小的情况下使新样本集逼近原样本集分布,既压缩了维数又保留了类别
转载
2021-12-15 16:34:30 ·
3157 阅读 ·
0 评论