使用尾递归计算Fibonacci数列

本文介绍了使用递归解决Fibonacci数列的问题,对比了普通递归和尾递归的效率差异。普通递归由于重复计算导致速度慢,而尾递归通过线性增长的计算过程提高了效率。尽管尾递归在函数式编程中常见,且部分编译器有优化,但通常建议将递归转换为循环以提高性能。
摘要由CSDN通过智能技术生成
    在过程式,面向对象编程中我们使用递归解决问题的机会不多.但是使用递归方式解决问题是一种比较直观而且简洁的方式,不过编译器对递归没有特别的优化.所以我们很容易写出效率不高的递归程序.而所谓尾递归就是在递归的时候进行计算.下面我以Fibonacci数列为例来说明普通递归和尾递归的不同. 
普通递归:
public long Fib_Common(int n)
        {
            if (n == 1 || n == 2)
                return 1;
            else
                return Fib_Common(n - 1) + Fib_Common(n - 2);
        }
这个实现简单明了就是执行速度太慢了,因为编译器是以如下方式进行计算的(例如计算Fib(6)):
Fib(6) = Fib(5) + Fib(4);
         = Fib(4) + Fib(3) + Fib(3) + Fib(2);
         = Fib(3) + Fib(2) + Fib(2) + Fib(1) + Fib(2) + Fib(1) + Fib(2);
         = Fib(2) + Fib(1) + Fib(2) + Fib(2) +
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值