自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

fudaihb的博客

一休哥助手,你的生活和工作好帮手

  • 博客(736)
  • 收藏
  • 关注

原创 命令模式:解耦请求与执行的优雅之道

命令模式是一种将请求封装为对象的设计模式,有效解耦请求发起者与执行者之间的直接依赖。核心思想是将操作抽象为独立对象,通过统一接口执行,支持参数化配置、队列管理、撤销/重做等高级功能。UML结构包含调用者(Invoker)、命令接口(Command)、具体命令(ConcreteCommand)和接收者(Receiver)四个关键角色。以智能家居控制系统为例,该模式可实现设备控制、宏命令组合和操作撤销。

2025-06-12 09:25:05 706

原创 RAG系统中Rerank技术的深度解析与应用实践

在当今大模型应用中,检索增强生成(RAG) 已成为解决知识更新和幻觉问题的核心技术架构。然而,实践表明超过70%的RAG系统在首次部署后面临答案不精准的困扰。其核心矛盾在于:召回率要求:需要返回足够多的文档确保关键信息不遗漏上下文限制:LLM处理长上下文时信息提取能力显著下降

2025-06-11 18:42:02 1257

原创 为什么RAG系统必须引入Rerank?深入解析两阶段检索的价值与挑战

在当今大模型应用中,检索增强生成(RAG) 已成为解决知识更新和幻觉问题的关键技术,但超过70%的RAG系统在首次部署后都面临答案不精准的困扰——而引入Rerank重排序机制,正是解开这一困局的关键密钥。

2025-06-11 09:27:42 348

原创 状态模式:对象行为的优雅状态管理之道

在软件开发中,我们常遇到对象行为随状态改变的场景:电梯的运行状态(停止/上行/下行)订单的生命周期(待支付/已发货/已完成)游戏角色的状态(正常/中毒/眩晕)TCP连接的状态(建立/监听/关闭)状态模式正是为解决这类问题而生的设计模式。它允许对象在内部状态改变时改变其行为,使对象看起来似乎修改了它的类。本文将深入解析状态模式的原理、实现及实战应用,帮助您掌握这一强大的行为管理工具。

2025-06-10 19:22:17 677

原创 CUDA:解锁GPU并行计算的革命性架构

在人工智能、科学计算和图形渲染领域,海量数据的并行处理已成为核心需求。传统CPU受限于冯·诺依曼架构的串行执行模式,难以应对现代计算的并行性要求。而GPU(图形处理器)凭借其数千个计算核心和高内存带宽,天然适合并行任务。CUDA(Compute Unified Device Architecture) 正是NVIDIA为释放GPU通用计算潜力而设计的革命性架构。自2006年推出以来,它已成为GPU加速计算的行业标准,驱动着从深度学习训练到气候模拟的各类高性能应用。

2025-06-10 09:21:55 582

原创 Easy Rules规则引擎:轻量级Java规则处理实践指南

Easy Rules是一款轻量级Java规则引擎,通过解耦业务规则与代码逻辑,有效解决传统硬编码带来的维护难题。其核心架构包括Rule、Rules、Facts和RulesEngine四大组件,支持四种规则定义方式:注解式、流式API、表达式和YAML配置。引擎提供两种执行策略(顺序执行和推理执行)和监听器机制,适用于电商促销、物联网监控等场景。相比策略模式,Easy Rules具备动态加载、规则组合和声明式编程优势,虽然首次执行性能略低,但大幅提升了系统的灵活性和可维护性。

2025-06-09 18:06:16 1151

原创 组合模式:构建树形结构的艺术

组合模式通过树形结构统一处理部分-整体层次关系(如文件系统、UI组件等),核心在于透明性(客户端无需区分叶子与复合节点)和递归组合。其UML结构包含抽象组件(Component)、叶子节点(Leaf)和复合节点(Composite),通过统一接口实现递归操作(如文件系统的文件夹与文件)。代码示例展示了透明式实现(推荐),虽可能需叶子节点空实现,但保持客户端简洁。适用场景包括UI系统、组织架构等需动态构建树形结构的场景,优势是简化代码、支持递归,但需警惕过度泛化导致接口污染。

2025-06-09 09:40:03 769

原创 模板方法模式:优雅封装不变,灵活扩展可变

模板方法模式通过定义算法骨架(固定流程)并延迟可变步骤到子类实现,平衡代码复用与扩展性。适用于数据库操作、HTTP请求等场景,符合“好莱坞原则”。其核心结构包含抽象类(定义模板方法)和具体子类(实现差异步骤),Spring的JdbcTemplate等框架广泛应用该模式。优点包括高复用性和扩展性,但存在继承强耦合的缺点。与策略模式相比,模板方法控制算法步骤扩展,而策略模式支持整体算法替换。通过钩子方法可灵活控制流程走向,适用于框架扩展点等复杂场景。

2025-06-06 17:58:26 1141

原创 Java适配器模式深度解析:无缝集成不兼容系统的艺术

适配器模式是一种结构型设计模式,用于解决接口不兼容问题,通过转换接口实现不同组件的协同工作。文章系统讲解了适配器模式的核心概念、两种实现方式(类适配器与对象适配器)及对比分析,指出对象适配器在Java中的优势。详细展示了Java标准库(如I/O流转换、集合适配)和Spring框架(如HandlerAdapter)中的实际应用案例,并提供了性能优化建议。最后探讨了现代Java开发中的适配器模式变体及与其他设计模式的对比,为系统集成和代码复用提供了实用解决方案。

2025-06-06 09:25:20 341

原创 Java原型模式深度解析:高效对象复制的艺术与实践

原型模式(Prototype Pattern)是一种通过复制现有对象而非实例化创建新对象的设计模式,适用于创建成本高或需要动态配置的场景。其核心结构包括原型接口、具体原型类和客户端调用,Java可通过Cloneable接口实现。克隆分为浅拷贝(引用复制)和深拷贝(对象独立),后者可通过序列化或工具库(如Gson)实现。该模式在性能优化和解耦对象创建方面具有优势,常见于Spring框架及需要高效生成相似对象的系统中。

2025-06-05 18:49:51 869

原创 Java装饰者模式深度解析:灵活扩展功能的艺术

本文系统介绍了装饰者模式(Decorator Pattern),这是一种结构型设计模式,允许动态添加功能而不改变对象结构。主要内容包括:1) 模式定义与核心思想;2) 标准UML类图与Java实现示例;3) 在Java I/O中的经典应用;4) 自定义I/O装饰器的实现方法。装饰者模式通过包装对象扩展功能,遵循开闭原则,避免了类爆炸问题,适合需要动态扩展功能的场景。文章以咖啡店示例和Java I/O库为例,详细展示了该模式的实际应用与实现原理。

2025-06-05 09:23:37 610

原创 Java观察者模式深度解析:构建松耦合事件驱动系统的艺术

本文全面解析观察者模式,涵盖基础概念、实现原理及实际应用。观察者模式作为行为型设计模式,通过一对多依赖关系实现对象间的动态联动。文章详细讲解标准UML结构、Java基础实现及内置Observable类的使用,并指出其局限性。重点介绍了Spring框架的高级应用,包括事件机制和异步处理。通过GUI事件、数据监控等典型场景,展示其解耦价值。最后总结常见问题与优化方案,展望其在响应式系统中的发展前景。

2025-06-04 18:35:49 1198

原创 Java设计模式深度解析:策略模式的核心原理与实战应用

策略模式是一种行为型设计模式,将算法封装为独立类,使其可相互替换。该模式由抽象策略、具体策略和环境上下文三部分组成,符合开闭原则,能有效消除条件分支,提高代码复用性和扩展性。典型实现步骤包括定义策略接口、实现具体策略类、创建上下文类及客户端调用。在电商促销、支付系统等场景中,策略模式可实现算法的动态切换,并通过同步机制确保线程安全。其核心优势在于算法自由切换、易于扩展和维护。

2025-06-04 09:40:03 366

原创 2025中国主流大模型全景解析:技术路线、场景实践与生态博弈

中国大模型产业已实现从技术追赶到创新引领的跨越,形成通用与垂直双轨并行的发展路径。主流模型如讯飞星火、通义千问等在医疗、多模态、代码生成等领域各具优势,通过知识蒸馏等技术实现小型模型性能跃迁。行业应用上,医疗、工业制造、内容创作等领域成效显著,如讯飞星火辅助诊断6.9亿次,修正基层误诊超100万次。生态博弈中开源策略分化,安全防护体系不断完善。未来趋势聚焦边缘智能、多模态融合和自主进化系统,预计2026年"通用底座+领域微调"将占48%市场。中国正通过差异化创新路径,加速实现应用引领。

2025-06-03 18:45:20 1244

原创 阿里云百炼全解析:一站式大模型开发平台的架构与行业实践

摘要: 阿里云百炼平台通过一站式架构革新大模型开发范式,将传统碎片化工具链整合为统一工作流,实现开发周期从月级到小时级的跃迁。其核心架构包含接入层、引擎层与资源层,关键技术突破包括MCP服务协议、多模态引擎及高性能训练优化。平台提供全生命周期开发支持,从数据准备到模型部署,并通过VPC隔离、数据加密构建企业级安全体系。已在医疗、电力等行业实现显著增效,如阿斯利康药物分析系统准确率提升至95%。未来将向多Agent协同、边缘计算等方向演进,推动AI技术深度融入产业核心。

2025-06-03 09:55:34 1045

原创 分布式存储技术全景解析:从架构演进到场景实践

本文系统分析了分布式存储的技术演进与行业应用。报告显示,2024年中国分布式存储市场规模达198.2亿元,首次超越集中式存储。文章深入剖析了分布式存储的三层架构设计、多种数据分布策略及容错机制,并介绍了全闪存加速、智能缓存等关键技术突破。通过医疗影像存储、AI训练等场景实践,展示了分布式存储的实际应用价值。最后指出未来将向存算一体、量子存储等方向发展,强调性能突破与场景适配的重要性。分布式存储正从技术备选发展为数字基础设施核心。

2025-05-30 09:53:13 966

原创 线程池上下文泄漏:跨线程池的ThreadLocal污染与防御之道

本文探讨了分布式系统中线程池与ThreadLocal结合使用时可能出现的跨线程池上下文污染问题。通过案例分析揭示了线程复用机制下ThreadLocal数据残留的现象,深入剖析问题根源在于:不完整的清理机制、线程资源共享以及防御性清理缺失。提出了四层系统化解决方案:1)统一任务装饰器清理所有上下文;2)防御性设置先清理后写入;3)线程池入口监控检测泄漏;4)物理线程隔离终极方案。最后推荐了使用AutoCloseable实现上下文自动关闭的最佳实践。

2025-05-29 18:46:01 1583

原创 AST抽象语法树:从编译原理到现代编程实践的全景解析

AST技术演进与应用实践摘要 抽象语法树(AST)作为编译技术的核心中间表示,已从1960年代ALGOL的基础概念发展为现代编程工具链的通用接口。其通过剥离语法细节保留逻辑结构,解决了代码处理的复杂性、平台无关性和工具链标准化三大问题。AST构建流程包含词法分析(生成Token流)、语法分析(形成树形结构)和语义分析(类型检查等)三个阶段,在Python、JavaScript等语言中各有特色实现。

2025-05-29 13:51:05 874

原创 Spring AI 1.0 GA 深度解析:构建企业级AI应用的全栈实践指南

Spring AI 1.0通过统一接口、多模型支持、模块化设计和企业级特性重构了AI开发范式,显著提升效率。其核心架构支持20+主流模型,提供RAG全流程自动化、声明式工具调用和对话记忆管理。企业级特性包括安全认证、监控评估和故障恢复,已在智能客服等场景验证效果,QPS达1500,延迟低于1秒。未来将扩展多模态、边缘计算等能力,持续降低AI应用门槛,推动生产级AI落地实践。

2025-05-28 19:08:43 960

原创 对象池技术全解析:原理、实现与最佳实践

对象池技术通过复用对象降低内存分配开销和GC压力,提升系统性能。其核心价值体现在减少对象创建成本(45%)、降低GC压力(30%)等方面。典型实现包含Java线程池、Python连接池等,性能优化后内存分配次数可减少99%,GC暂停时间降低90%。企业级应用如HikariCP数据库连接池显著提升QPS(15000 vs C3P0的3500)。对象池适用于高创建成本、高频复用的无状态资源,未来趋势包括智能伸缩和跨语言标准化。

2025-05-28 09:39:03 996

原创 Web通信协议全景解析:从HTTP到WebService的技术演进与对比

本文深入解析了HTTP/HTTPS协议与WebService架构的核心技术,从协议演进、安全机制到性能优化等方面进行系统对比分析。主要内容包括:1)HTTP协议从0.9到HTTP/3的演进历程;2)HTTPS的TLS加密体系与HTTP明文传输的本质差异;3)SOAP和RESTful两种WebService架构的设计特点与适用场景;4)全面对比了各协议在性能、安全等方面的表现;5)提供了协议选型决策树及行业应用案例。

2025-05-27 18:28:19 1322 1

原创 Spring Boot整合Spring AI全攻略:构建智能应用的工程实践

本文系统介绍了Spring AI的技术演进与实战应用。传统AI集成面临接口碎片化、开发效率低等痛点,Spring AI通过统一API抽象层、流式响应等创新实现突破。文章详细讲解了环境搭建、核心功能(对话模型、函数调用、向量数据库)及企业级应用(多模型路由、混合云部署),并给出性能优化与安全实践方案。最后展望多模态融合、边缘计算等未来趋势,指出Spring AI将成为Java开发者构建智能应用的核心技术。全文结合代码示例和技术图表,为开发者提供实用指南。

2025-05-27 09:28:00 1114

原创 Docker镜像与容器深度解析:从概念到实践的全面对比

本文详细解析了Docker镜像与容器的核心概念、技术架构、生命周期、存储结构、应用场景、安全与性能考量,并总结了最佳实践。Docker镜像是只读的模板,采用分层存储结构,用于构建和分发应用程序;容器则是镜像的运行实例,具有可写层,提供独立的运行环境。两者在存储特性、生命周期、创建方式等方面存在显著差异。技术架构上,镜像通过分层结构实现高效存储,容器则通过可写层实现动态修改。应用场景中,镜像用于标准化交付和版本管理,容器用于快速启动和开发调试。安全与性能方面,建议最小化基础镜像、多阶段构建、资源限制和日志管理

2025-05-25 10:10:03 1209

原创 大模型技术生态全景解析:从基础组件到AGI的演进之路

文章探讨了大语言模型及其相关技术的演进与应用,重点分析了RAG、Agent、向量数据库和知识图谱等技术组件在智能生态中的核心作用。大语言模型作为基础推理引擎,通过知识增强和功能扩展机制,逐步实现复杂任务的分解与执行。RAG技术通过动态知识增强提升了问答系统的准确率,而Agent系统则通过工具调用和任务规划扩展了模型的功能边界。向量数据库和知识图谱在数据存储与检索方面提供了高效支持,推动了AGI(通用人工智能)的实现路径。文章还列举了智能投研和智慧医疗等典型应用场景,展示了这些技术在实际中的显著效果。

2025-05-23 18:30:46 1086

原创 Spring Boot WebFlux流式返回全攻略:从基础到企业级实践

本文探讨了流式返回技术的核心价值、适用场景及其在企业级应用中的优化方案。传统同步阻塞模型在大模型推理、实时数据监控和大文件传输等场景下存在局限性,而流式返回通过分块传输、资源高效利用、长连接支持和背压控制等优势,显著提升了用户体验和系统性能。WebFlux作为响应式编程模型的核心,通过Flux、Mono和Scheduler等组件,实现了高并发、低内存消耗的流式处理。文章还详细介绍了基础流式接口的开发实战,包括环境配置、大模型对接示例,以及企业级应用中的高并发优化和混合编程实践。

2025-05-23 09:16:55 950

原创 大语言模型与人工智能:技术演进、生态重构与未来挑战

大语言模型与人工智能:技术演进、生态重构与未来挑战

2025-05-21 18:35:51 1311

原创 AG-UI:重构AI代理与前端交互的下一代协议标准

AG-UI协议通过标准化的事件驱动架构和灵活的状态管理机制,解决了AI应用生态中的交互碎片化、状态同步困难和实时性不足等核心问题。该协议采用分层架构设计,支持多种传输模式(SSE、WebSocket、Webhook),并通过16类标准化事件覆盖全交互场景,显著提升了开发效率和用户体验。AG-UI在智能客服、实时协作代码编辑器和多模态设计助手等场景中展现出显著优势,如减少网络负载、提升客服效率和缩短开发周期。未来,AG-UI将进一步扩展多模态支持、边缘计算和量子安全等领域,为开发者提供更多机遇,推动AI普惠化

2025-05-21 09:16:26 1431

原创 HuggingFace全栈开发指南:从零构建AI应用的技术全景图

HuggingFace全栈开发指南:从零构建AI应用的技术全景图

2025-05-20 18:35:15 1105

原创 LLaMA-Factory全解析:大模型微调的开源利器与实战指

LLaMA-Factory作为一个开源框架,通过整合100+主流模型和20+微调算法,显著降低了垂直场景下大模型微调的算力门槛和技术复杂度。其核心架构包括模型加载、数据处理、训练策略和可视化界面,支持混合精度训练、动态量化和注意力优化等关键技术。环境搭建灵活,支持云镜像和本地部署,提供全流程微调指南,包括数据准备、LoRA微调配置和模型评估部署。企业级应用涵盖金融、医疗、电商和教育等多个行业,支持多机分布式训练。性能优化策略包括梯度检查点、模型并行和量化部署,安全防护方案则涵盖身份认证、输入过滤和输出脱敏。

2025-05-20 09:20:02 785

原创 Llama大模型微调全攻略:从零基础到工业级实践

Llama大模型微调全攻略:从零基础到工业级实践

2025-05-16 09:39:57 1173

原创 AI数字人:技术革新与应用全景解析

AI数字人:技术革新与应用全景解析

2025-05-15 18:48:00 811

原创 IntelliJ IDEA 集成AI编程助手全解析:从Copilot到GPT-4o Mini的实践

IntelliJ IDEA 集成AI编程助手全解析:从Copilot到GPT-4o Mini的实践

2025-05-15 09:20:21 1233

原创 深入剖析Arrays.asList():数组转集合的七大陷阱与最佳实践

本文深入探讨了Java中Arrays.asList()方法的使用及其潜在问题。首先,文章介绍了Java集合框架的基础知识,包括数组与集合的差异以及Arrays工具类的功能。接着,详细解析了Arrays.asList()方法的实现原理及其返回列表的特性,指出其固定大小、视图模式等关键特点。随后,文章列举了使用该方法时常见的七大陷阱,如不可变结构异常、数组视图同步问题、基本类型自动装箱等,并提供了相应的解决方案和替代方案,如使用new ArrayList

2025-05-13 18:38:31 1055

原创 深度求索(DeepSeek)大模型本地化部署全解析:从环境搭建到生产实践

随着大规模预训练模型的快速发展,企业级本地化部署成为AI落地的关键挑战。本文以DeepSeek系列模型为研究对象,详细阐述了从硬件环境准备到服务端优化的全流程部署方案。文章首先分析了大模型部署范式的演进,从早期的单机部署到当前的云边端协同部署,强调了软硬件协同设计的重要性。随后,文章详细介绍了DeepSeek模型的特性,包括其混合架构、参数量级和硬件需求。在部署环境准备部分,提供了硬件配置方案、软件依赖清单和网络拓扑设计,确保系统的高效运行。

2025-05-13 09:40:54 969

原创 深度解析Nginx、LVS与HAProxy:负载均衡三巨头的架构设计与实战选型

随着互联网流量指数级增长,单点服务器架构已无法满足现代应用需求。从早期硬件负载均衡器(F5、Array)到如今的软件定义负载均衡,技术演进始终围绕三个核心目标展开:- **流量分发**:智能分配请求至最优节点- **故障容灾**:自动剔除异常后端节点- **性能优化**:最大化集群资源利用率Nginx、LVS、HAProxy作为开源负载均衡的"三驾马车",分别在不同层级和场景中展现独特优势。

2025-05-12 18:54:56 759

原创 Spring生态全景解析:从Spring到Spring Cloud的技术演进之路

本文从技术演进的角度,深入剖析了Spring技术栈中的四大核心技术:Spring、Spring MVC、Spring Boot和Spring Cloud。Spring作为企业级开发的基石,通过IoC和AOP简化了传统EJB开发的复杂性。Spring MVC提供了Web开发的标准化方案,采用MVC架构实现请求处理。Spring Boot通过自动配置和嵌入式服务器,极大简化了应用的开发和部署。Spring Cloud则为微服务架构提供了完整的解决方案,涵盖服务注册、配置管理、网关路由等功能。

2025-05-12 09:25:05 1021

原创 深入解析Docker底层原理:从Namespace到联合文件系统

通过对Docker底层原理的深入剖析,我们不仅理解了Namespace、cgroups和UnionFS等核心技术,更看到了容器技术在现代IT架构中的核心地位。随着云原生生态的持续演进,容器技术必将在性能优化、安全增强和跨平台支持等方面持续突破,为软件开发带来更多可能性。

2025-05-09 09:17:17 1183

原创 SpringBoot默认选择CGLIB动态代理的深度解析:兼容性、性能与设计哲学

SpringBoot选择CGLIB作为默认代理策略,体现了框架设计者在兼容性、性能与易用性之间的精妙权衡。深入理解这一技术选择背后的原理,将帮助开发者更好地设计系统架构,编写高效的AOP代码,并在复杂场景下做出正确的技术决策。参考文献[1] Spring Framework官方文档 - AOP章节[2] 《深入理解Java虚拟机》第10章 - 周志明[3] CGLIB GitHub仓库源码分析[4] Spring Boot性能优化白皮书2024版。

2025-05-08 17:59:12 1403

原创 LLaMA模型本地部署全攻略:从零搭建私有化AI助手

从Ollama的一键部署到vLLM的高性能推理,LLaMA的本地化方案正在重塑AI应用开发生态。随着量化技术和硬件加速的持续突破,未来个人设备运行百亿参数模型将成为常态。建议开发者重点关注模型压缩、RAG系统优化等方向,把握大模型私有化部署的历史机遇。

2025-05-08 09:18:25 1328

原创 GPT与LLaMA:两大语言模型架构的深度解析与对比

维度GPT系列LLaMA系列架构基础密集Transformer解码器改进型解码器(Pre-Norm+RMSNorm)位置编码绝对编码 → RoPE旋转位置编码(RoPE)归一化LayerNormRMSNorm激活函数GELU/ReLUSwiGLU开源策略闭源API服务全模型权重开源长文本处理位置插值扩展上下文窗口滑动窗口多头潜在注意力能耗效率高(全参数激活)低(MoE稀疏激活)GPT与LLaMA的技术路线之争,本质上是“通用智能”与“垂直效率”的哲学选择。

2025-05-07 17:58:52 1133

软考论文预习讲义项目管理师

软考论文预习讲义项目管理师

2025-03-28

清华大学deepseek使用教程

清华大学deepseek使用教程

2025-02-28

软考高级系统架构设计师:思维导图、经验总结、知识点整理、学习笔记、考前背诵等

软考高级系统架构设计师:思维导图、经验总结、知识点整理、学习笔记、考前背诵等

2025-02-08

软考系统架构师参考论文

软考系统架构师参考论文

2024-10-16

15 种高级 RAG 技术 从预检索到生成

我们关于检索增强生成 (RAG) 的入门文章介绍了关键概念,并探讨了 RAG 系统的工作原理。在本白皮书中,我们探索了 15 种高级 RAG 技术,以提高生成式 AI 系统的输出质量和整体性能的鲁棒性。这些高级 RAG 技术极大地扩展了团队微调系统性能的选择。例如,在为一家大型金融服务公司构建安全的对话式 AI 助手时,我们实验了本白皮书中探讨的大多数高级 RAG 技术。这使我们能够测试并识别适当的优化方案,从预检索到生成,利用我们的自动化 RAG 评估管道。

2024-09-25

huggingface上bge-reranker-base模型文件下载和本地使用

模型使用: from sentence_transformers import SentenceTransformer sentences_1 = ["你是谁"] sentences_2 = ["你是哪个", "你是谁啊","who are you","谁"] model = SentenceTransformer('/Users/hb-mac/Documents/chatGpt/llam/bge-reranker-base') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity)

2024-06-19

llamaindex入门案例代码

注意: (1)python版本:3.11 (2)llamaindex版本:pip3 install llama-index==0.9.34 (3)底层大模型使用默认的chatGpt,需要有chatGpt的api_key (4)本地网络环境需要梯子

2024-02-29

承诺书模板-网站备案信息真实性承诺书.pdf

承诺书模板-网站备案信息真实性承诺书.pdf

2023-12-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除