线性代数
Fuego801
这个作者很懒,什么都没留下…
展开
-
1.人工智能数学基础--《线性代数》--矩阵及矩阵的基本标识
矩阵的概念: 一个长方形排列的复数和实数集合供人理解的图片: 矩阵形式是供给机器看的,用于输入数据: Minst数据集:55000张数字图矩阵是开放的。每张图片50行*32列=1600个像素点;因为共55000张图片,如果要将所有图片的像素都汇集到一个矩阵中,那么每行作为一个图片的像素,将每张图片的1600个像素点展开为一行,这样就组成了一个55000行*1600列的超...原创 2018-05-16 10:27:37 · 566 阅读 · 0 评论 -
9.人工智能数学基础--《微积分与概率论》--概率
概率介绍及公式: 机器学习、深度学习预测印刷版/手写版数字的原理: 是基于概率预测的,首先假设预测图为数字‘9’, 然后ml,dl模型对原图与模型中的‘0’ –‘9’数字一一对应,分别得出相应的概率,然后挑选出最大概率的数字,就是最终预测的结果。...原创 2018-05-16 14:48:15 · 578 阅读 · 0 评论 -
8.人工智能数学基础--《微积分与概率论》--导数在梯度下降中的应用
方向导数: 主要是求在某个方向上导数最大,然后此时梯度下降最快,可以以最快的速度达到最优解。但有可能计算360度方向上进行导数计算,其导数可能只是局部最优值,因为可能按照当前方向进行计算,到了一半进度的时候,又遇到了比他高的陡坡,而没有按此方向计算一直到底部,这就称之为局部最优解。 ...原创 2018-05-16 13:43:10 · 698 阅读 · 0 评论 -
7.人工智能数学基础--《微积分与概率论》--极限与导数
了解极限与导数的概念: 导数:f ’ (x0) = △y/△x;常用导数公式:原创 2018-05-16 13:26:19 · 977 阅读 · 0 评论 -
6.人工智能数学基础--《线性代数》--奇异值分解
奇异值概念: 特征值分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,而奇异值分解是一个能适用于任意的矩阵的一种分解的方法。 奇异值求解过程: 第一张图是将奇异值式子简化,化为求特征值的式子,即为Av = λv的样式。 这样就方便求解V, D矩阵的值,然后再求U矩阵的值。...原创 2018-05-16 12:38:59 · 441 阅读 · 0 评论 -
5.人工智能数学基础--《线性代数》--特征值和特征向量
学会计算特征值与特征向量 Av = λv, λ为特征值(对应特征向量的长度倍数),v为对应λ的特征向量。 如何计算?百度。。。原创 2018-05-16 11:36:43 · 840 阅读 · 0 评论 -
4.人工智能数学基础--《线性代数》--向量
1.向量:原创 2018-05-16 11:15:10 · 594 阅读 · 0 评论 -
3.人工智能数学基础--《线性代数》--几种特殊的矩阵及矩阵行列式的计算
方阵: n阶矩阵,n行n列,主对角线、次对角线。单位矩阵: E 也就是主对角线都是1,其他都是0.正交矩阵: 满足A x (A)T = E,则称A为正交矩阵。矩阵的转置: 上/下三角矩阵: 针对主对角线来说.行列式: 会计算行列式,三阶;奇异矩阵条件: 是方阵; 行列式为0;...原创 2018-05-16 10:54:56 · 1141 阅读 · 0 评论 -
2.人工智能数学基础--《线性代数》--矩阵基本运算
1.同型矩阵:行数和列数都相同的两个及以上的矩阵。 2.矩阵的加减法,数乘,乘法; 3.性质: A+B=B+A (A+B)+C=A+(B+C)结合律:(AB)C=A(BC) 分配律: (A+B)C=AC+BC C(A+B)=CA+CB4.矩阵的乘法不满足交换律。...原创 2018-05-16 10:39:50 · 743 阅读 · 0 评论 -
10.人工智能数学基础--《微积分与概率论》--随机变量、期望、方差
期望: 方差:原创 2018-05-16 15:33:22 · 581 阅读 · 5 评论