写在前面:
「为每个人提供最有价值的技术赋能」,2025年我们和赋范空间的小伙伴们一起来!
发起的“Agentic 时代同行计划”会和我们的学员一起,分享自己的经历、经验,集结群体的智慧一起拥抱Agentic新时代!
受访者:Marmot同学,10+年工作经验,大模型项目落地负责人
采访&整理:运营范范
大模型对程序员“降维打击”
范范:请同学先介绍下自己吧
hello大家好,我是Marmot,13年从上大毕业,在现在的赋范空间学习的学生中,我应该属于软件行业的一个老兵了。
目前在一家供应链行业的公司,岗位是一条产线的测试负责人,也是公司内推进大模型在测试领域进行技术落地的负责人。
范范:听到你说所在的公司也在落地大模项目,能分享一下贵公司的进度吗?
我们公司在大模型上落地上更偏向于应用,公司最终目的是想依托大模型完成数字化员工的概念。
目前在部分业务场景上,已达到可以通过模型的意图识别、流程编排了,最终能达到自动接单并完成处理。
范范:在实际用大模型后,体感是怎么样的?
几乎是降维打击,特别是非业务耦合的工具性代码。
就目前我感受到的而言,大模型最先解放的还是程序员,我个人感觉比之前手搓代码的时代效率提高了30%+。
而除了代码生成,通过模型的意图识别,对工程上的流程编排也有着较好的效果。
范范:那你会有被替代的焦虑吗?
在大模型刚崛起时确实会,软件行业的每个人或多或少都会有些许焦虑。但是就像百年前织布工人怒砸织布机,却无法阻挡织布机进入时代一样,此时此刻的大模型,恰如彼时彼刻的织布机。
而且危险与机遇均是并存的,大模型的崛起也代表着,每个人的能力边界得到了极大的拓宽。原先可能因资源不足的事情,现在得到了转机甚至有了新的发展。
我认为拥抱大模型,扩展自己的能力边界比焦虑更重要!
范范:那作为负责人,还会招测试的新人吗?
要招的,在基础要求之外我们更希望招募对新技术有好奇心,有探索精神的小伙伴。
数学是大模型万物的基础
范范:学习数学,如何对大模型的学习提供帮助?
如果是往大模型方向求职或者工作,数学可以说是万物的基础,是决定着你能走多远的重要因素。
我认为现在的大模型可以分为模型与应用两方面,模型上包含蒸馏,微调等等技术方式,应用上包含多智能体,RAG等技术。
我个人数学比较弱,毕竟早就束之高阁了,所以选择了对数学要求不那么高的应用方向。但这不代表数学就不用管了,想要掌握自己开发的项目,不让它成为一个“黑盒”,数学是必须的。
范范:该学习哪些呢?又该怎么学?
现在来看,数学学习中,涉及到机器学习的基础部分、线性代数以及高数部分,是必须要学习的。0基础的小伙伴,建议看菜菜老师和九天老师的课,能少走很多弯路。
这里以我自己为例,意识到自己需要学习大模型后就一直尝试通过各种方式和渠道去学习,但是面对各类文章里的数学公式、算法介绍只能望洋兴叹。
我甚至一度把线性代数这本书给重新拾起来,但终究杯水车薪,收效甚微。
跟着九天老师和菜菜老师学则不一样,看完视频就能明显感受到自己真正掌握了这些知识,效率提高非常大。所以也真的建议想入门的小伙伴,一定要跟着老师或行业的人给予学习的路径指引,能大大降低学习成本。
以上就是本次访谈的全部内容啦~
“Agentic时代同行计划”是希望集结大家的智慧。也许你的一句话会在未来5年、10年点亮另一个人的心,给予他继续前行的力量!
访谈不限主题、不限内容,会有专人进行访编辑并维护~
如果你也想分享自己的经验,欢迎联系助教老师,当下仅针对付费用户开放哦~
为每个人提供最有价值的技术赋能!【公益】大模型技术社区已经上线!
九天&菜菜&菊安酱&木羽老师,30+套原创系统教程,涵盖国内外主流「开&闭源大模型」调用与部署,RAG、Agent、微调实战案例…
所有内容免费公开,还将定期追更最新大模型技术进展~
GitHub同步上线:https://github.com/fufankeji/LLMs-Technology-Community-Beyondata
【大模型社群免费提供】
✅新知速递:重大技术突破&最新技术信息通报;
✅干货分享:每月2-3场硬核干货&技术公开课;
✅20+主流开源&在线大模型部署与调用方法;
✅团队独家自研高品质技术教程;
✅社区交流:活跃技术氛围,技术交流&答疑;
快行动起来吧~