基于大数据技术的中医知识图谱系统设计与实现计算机毕业设计

博主介绍:✌ 专注于VUE,小程序,安卓,Java,python,物联网专业,有17年开发经验,长年从事毕业指导,项目实战✌选取一个适合的毕业设计题目很重要。✌关注✌私信我✌具体的问题,我会尽力帮助你。

研究的背景:
近年来,随着大数据技术的快速发展,中医知识图谱作为一种重要的知识表示和存储方式,在中医领域中的应用越来越广泛。然而,目前市面上的中医知识图谱系统仍然存在许多问题,如数据更新不及时、知识表示不够准确等。因此,本研究旨在设计和实现一个基于大数据技术的中医知识图谱系统,以解决现有问题,提高中医知识图谱的应用价值。在大数据技术的支持下,本研究将通过对大量中医古籍、学术论文、网络资源等进行深度挖掘和分析,构建一个全面、系统的中医知识图谱。该系统将采用先进的知识表示方法和图谱算法,实现对中医知识的智能检索、推荐和分析功能,为中医研究者提供更加便捷、高效的知识服务。同时,本研究还将关注中医知识的更新和维护,确保知识图谱的实时更新和准确性,从而提高中医知识图谱的应用价值。

研究或应用的意义:
基于大数据技术的中医知识图谱系统设计与实现的研究具有重要的意义。随着大数据技术的发展,中医知识图谱的应用越来越广泛,可以为中医研究者提供更加便捷、高效的知识服务。同时,通过深度挖掘和分析大量中医古籍、学术论文、网络资源等,构建一个全面、系统的中医知识图谱,可以有效解决现有中医知识图谱存在的问题,提高中医知识图谱的应用价值。此外,关注中医知识的更新和维护,确保知识图谱的实时更新和准确性,有助于推动中医领域的创新和发展,促进中医知识的传承和发扬。因此,本研究具有很高的理论和实践意义。

国外研究现状:
近年来,国外对于基于大数据技术的中医知识图谱系统设计与实现的研究也取得了一系列成果。一些研究者采用知识图谱和图谱挖掘技术,对中医古籍、学术论文等资源进行深度挖掘和分析,构建了中医知识图谱。这些研究通过运用数据挖掘、自然语言处理等技术,对中医知识进行智能检索、推荐和分析,为中医研究者提供了便捷、高效的知识服务。同时,国外研究者在知识图谱的更新和维护方面也进行了积极探索,以确保知识图谱的实时更新和准确性。总体来说,国外研究者在基于大数据技术的中医知识图谱系统设计与实现方面,已经取得了一定的成果,为我国相关研究提供了有益的参考和借鉴。然而,本研究将更加关注中医知识的深度挖掘、智能检索和推荐等方面,以期在现有研究基础上取得更大的突破。

国内研究现状:
近年来,我国对于基于大数据技术的中医知识图谱系统设计与实现的研究也取得了一系列成果。一些研究者采用知识图谱和图谱挖掘技术,对中医古籍、学术论文等资源进行深度挖掘和分析,构建了中医知识图谱。这些研究通过运用数据挖掘、自然语言处理等技术,对中医知识进行智能检索、推荐和分析,为中医研究者提供了便捷、高效的知识服务。同时,国内研究者在知识图谱的更新和维护方面也进行了积极探索,以确保知识图谱的实时更新和准确性。总体来说,国内研究者在基于大数据技术的中医知识图谱系统设计与实现方面,已经取得了一定的成果,为我国相关研究提供了有益的参考和借鉴。然而,本研究将更加关注中医知识的深度挖掘、智能检索和推荐等方面,以期在现有研究基础上取得更大的突破。

研究内容:
本研究将围绕基于大数据技术的中医知识图谱系统设计与实现这一课题进行深入探讨。首先,我们将对中医古籍、学术论文等资源进行深度挖掘和分析,构建一个全面、系统的中医知识图谱。接着,运用数据挖掘和自然语言处理等技术,对中医知识进行智能检索、推荐和分析,为中医研究者提供便捷、高效的知识服务。同时,关注中医知识的更新和维护,确保知识图谱的实时更新和准确性。在构建中医知识图谱的过程中,我们将重点研究知识表示方法和图谱算法,以提高知识图谱的准确性和可扩展性。此外,还将研究知识图谱的更新和维护策略,以保证知识图谱的实时更新和准确性。最后,通过实验验证本研究所提出的基于大数据技术的中医知识图谱系统设计与实现的有效性和可行性。

预期目标及拟解决的关键问题:
本研究的预期目标是设计和实现一个基于大数据技术的中医知识图谱系统,该系统可以提供便捷、高效的知识服务,为中医研究者提供有效的帮助。为实现这一目标,本研究拟解决以下关键问题:1. 数据获取与预处理:从中医古籍、学术论文等资源中获取大量高质量的中医知识数据,并进行预处理,以提高数据的可用性和准确性。2. 知识表示与构建:研究有效的知识表示方法,将中医知识进行简洁、准确地表示,并构建一个全面、系统的中医知识图谱。3. 智能检索与推荐:利用数据挖掘和自然语言处理技术,实现对中医知识的智能检索、推荐和分析,为中医研究者提供便捷、高效的知识服务。4. 知识更新与维护:研究知识图谱的更新和维护策略,确保知识图谱的实时更新和准确性。5. 系统评估与优化:通过实验验证本研究所提出的基于大数据技术的中医知识图谱系统设计与实现的有效性和可行性,并根据实验结果对系统进行优化。通过解决以上关键问题,本研究旨在实现一个功能完善、性能优越的基于大数据技术的中医知识图谱系统,为中医领域的创新和发展提供有力支持。

研究方法:
在本研究中,我们将采用多种方法相结合,以确保研究目标的实现。具体研究方法如下:1. 文献研究法:通过查阅大量相关文献,了解国内外在基于大数据技术的中医知识图谱系统设计与实现方面的研究成果和发展趋势,为后续研究提供理论依据和参考。2. 实验法:设计并实现基于大数据技术的中医知识图谱系统,通过实际应用和测试,验证所提出的系统的有效性、可行性和优越性。3. 经验总结法:在实际应用过程中,对所提出的中医知识图谱系统进行不断改进和优化,积累经验,为后续研究提供实际指导。通过上述多种方法的相互结合,本研究将全面探讨基于大数据技术的中医知识图谱系统设计与实现的有效性和可行性,为中医领域的创新和发展提供有力支持。

技术路线:
本研究的技术路线主要包括以下几个阶段:1. 数据获取与预处理:从中医古籍、学术论文等资源中获取大量高质量的中医知识数据,并进行预处理,如数据清洗、去重、格式转换等,以提高数据的可用性和准确性。2. 知识表示与构建:研究有效的知识表示方法,将中医知识进行简洁、准确地表示,并构建一个全面、系统的中医知识图谱。知识表示方法可以包括概念图、OWL等,构建方法可以采用层次化结构、图谱挖掘等技术。3. 智能检索与推荐:利用数据挖掘和自然语言处理技术,实现对中医知识的智能检索、推荐和分析,为中医研究者提供便捷、高效的知识服务。这一阶段将采用检索式算法、基于内容的推荐算法、协同过滤算法等技术进行实现。4. 知识更新与维护:研究知识图谱的更新和维护策略,确保知识图谱的实时更新和准确性。这一阶段可以采用增量更新、同义词扩展、知识融合等技术进行实现。5. 系统评估与优化:通过实验验证本研究所提出的基于大数据技术的中医知识图谱系统设计与实现的有效性和可行性,并根据实验结果对系统进行优化。通过以上技术路线的实施,本研究将实现一个功能完善、性能优越的基于大数据技术的中医知识图谱系统,为中医领域的创新和发展提供有力支持。

关键技术:
本研究的关键技术主要包括以下几个方面:1. 前端开发:本研究采用Echarts.js框架和Vue框架进行前端开发。Echarts.js是一款开源的图表库,具有丰富的图表类型和良好的性能,能够为前端提供丰富的数据可视化功能。Vue框架则是一个轻量级的前端框架,易于上手,具有良好的性能和可扩展性,可以快速构建高效的前端应用。2. 后端开发:本研究后端采用Python的Flask框架进行开发。Flask是一个轻量级、快速的开发框架,易于上手,可以轻松地搭建Web应用。通过Flask框架,我们可以方便地实现业务逻辑、数据库操作等任务。3. 数据库:本研究采用Mysql数据库进行存储和管理数据。Mysql是一款开源的 relational database management system(RDBMS),具有良好的性能和稳定性,可以满足大规模数据存储和查询的需求。通过Mysql,我们可以方便地对中医知识图谱数据进行存储、管理和查询。通过以上关键技术的结合,本研究将实现一个功能完善、性能优越的基于大数据技术的中医知识图谱系统。前端使用Echarts.js框架和Vue框架进行开发,后端使用Python的Flask框架开发,数据库采用Mysql进行存储和管理数据。这一技术路线将为本研究提供强大的技术支持,有助于实现研究目标。

预期成果:
本研究旨在设计和实现一个基于大数据技术的中医知识图谱系统,通过以下预期成果实现:1. 构建一个全面、系统的中医知识图谱,包含大量的中医概念、疾病、症状、治疗方法等信息。2. 提供智能检索和推荐功能,使得中医研究者可以方便地查找和获取相关知识,提高研究效率。3. 实现对中医知识的深度挖掘和分析,为中医研究提供新的视角和思路。4. 研究知识图谱的更新和维护策略,确保知识图谱的实时更新和准确性。5. 提供一个易用、高效的前端界面,使得中医知识图谱系统可以被广泛应用于中医领域。通过实现以上预期成果,本研究希望能够为中医领域的创新和发展提供有力支持,推动中医知识的传承和发扬。

创新之处:
本研究在设计和实现基于大数据技术的中医知识图谱系统方面,有以下1. 利用Echarts.js框架和Vue框架进行前端开发,这两种框架在数据可视化和前端开发领域具有较高的应用价值和性能优势,为中医知识图谱系统的展示和交互提供了良好的支持。2. 采用Python的Flask框架进行后端开发,Flask是一个轻量级、快速的开发框架,易于上手,可以轻松地搭建Web应用,为中医知识图谱系统的业务逻辑和数据处理提供了高效的解决方案。3. 利用Mysql数据库进行数据存储和管理,Mysql是一款开源的RDBMS,具有良好的性能和稳定性,可以满足大规模数据存储和查询的需求,为中医知识图谱系统的数据处理和分析提供了可靠的数据支持。4. 研究知识图谱的更新和维护策略,确保知识图谱的实时更新和准确性,针对知识图谱系统中可能出现的数据不一致、数据缺失等问题,研究有效的解决方案,提高知识图谱的质量和可靠性。5. 构建一个易用、高效的前端界面,使得中医知识图谱系统可以被广泛应用于中医领域,采用现代前端设计理念和技术,为用户提供了友好的使用体验。通过以上创新之处,本研究旨在实现一个功能完善、性能优越的基于大数据技术的中医知识图谱系统,为中医领域的创新和发展提供有力支持,推动中医知识的传承和发扬。

功能设计:
本研究在设计和实现基于大数据技术的中医知识图谱系统时,主要从以下几个方面进行1. 数据获取与预处理:系统应该能够方便地从各种渠道获取中医知识数据,并对这些数据进行预处理,以便后续的知识图谱构建。2. 知识表示与构建:系统需要将获取的中医知识数据进行有效的表示和构建,以形成一个全面、系统的中医知识图谱。3. 智能检索与推荐:系统应提供智能检索和推荐功能,使得中医研究者可以方便地查找和获取相关知识,提高研究效率。4. 知识更新与维护:系统需要研究知识图谱的更新和维护策略,确保知识图谱的实时更新和准确性。5. 用户界面:系统需要提供一个易用、高效的前端界面,使得中医知识图谱系统可以被广泛应用于中医领域。通过对以上功能的设计,本研究旨在实现一个功能完善、性能优越的基于大数据技术的中医知识图谱系统,为中医领域的创新和发展提供有力支持,推动中医知识的传承和发扬。

数据库表结构:


文章下方名片联系我即可~大家点赞、收藏、关注、评论啦 、查看下方👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sj52abcd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值