//头文件为softcascade.hpp、core.hpp
//实现文件为octave.cpp
//但是还涉及到了ml.hpp和Dtree.cpp等文件
//softcascade检测器训练函数的代码如下:
bool BoostedSoftCascadeOctave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth)
{//第1个参数dataset是一个可以与训练集通信的实例,第2个参数表示特征集,第3个参数是需要训练的弱分类器树数量,第4个参数是分类器树的深度
CV_Assert(treeDepth == 2); //?要求弱分类树的深度只能为2吗?
CV_Assert(weaks > 0);
params.max_depth = treeDepth;
params.weak_count = weaks;
// 1. fill integrals and classes,?这里计算了每个样本的所有积分图和标定了标签吗?是的,对于正样本,response向量中响应的元素值设置为了1,负样本设置为了0
processPositives(dataset);
generateNegatives(dataset);
// 2. only simple case (all features used) //使用所有的特征
int nfeatures = pool->size();
cv::Mat varIdx(1, nfeatures, CV_32SC1);
int* ptr = varIdx.ptr<int>(0);
for (int x = 0; x < nfeatures; ++x)
ptr[x] = x;
// 3. only simple case (all samples used) //使用所有训练样本
int nsamples = npositives + nnegatives;
cv::Mat sampleIdx(1, nsamples, CV_32SC1);
ptr = sampleIdx.ptr<int>(0);
for (int x = 0; x < nsamples; ++x)
ptr[x] = x;
// 4. ICF has an ordered response.
cv::Mat varType(1, nfeatures + 1, CV_8UC1); //指定按特征响应排序?最后多的一个元素表示什么意思?是不是表示将要输入训练函数train()(在倒数第3行)中的response向量保存的是类标签
uchar* uptr = varType.ptr<uchar>(0);
for (int x = 0; x < nfeatures; ++x)
uptr[x] = CV_VAR_ORDERED; //这个排序无法理解!
uptr[nfeatures] = CV_VAR_CATEGORICAL;
trainData.create(nfeatures, nsamples, CV_32FC1); //生成用来训练用的数据矩阵,看下面的双重循环就知道,其中每行对应到一个特征,每列对应到一个样本,该矩阵每个元素保存的是某样本某特征的积分图。
for (int fi = 0; fi < nfeatures; ++fi)
{
float* dptr = trainData.ptr<float>(fi);
for (int si = 0; si < nsamples; ++si)
{
dptr[si] = pool->apply(fi, si, integrals);
}
}
cv::Mat missingMask;
bool ok = train(trainData, responses, varIdx, sampleIdx, varType, missingMask); //?主要的训练函数,trainData是用特征表示的训练集矩阵,responses是样本对应的类标签,varIdx是所学习的特征的所有索引,sampleIdx是训练样本的索引,?varType表示是否对特征响应排序?,missingMask用来保存错误的分类。
if (!ok)
CV_Error(CV_StsInternal, "ERROR: tree can not be trained");
return ok;
}
//其中用到的训练函数如下,可见它调用了boost类的train()函数,并且推测得到的检测器保存在params中。
//它调用了CvBoostTree::train()函数来,并加入了params参数,看来在BoostedSoftCascadeOctave类中没有params成员,但是最终的检测器时保存在该成员中的,到现在为止还是训练整个的检测器:
bool BoostedSoftCascadeOctave::train( const cv::Mat& _trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
{
bool update = false;
return cv::Boost::train(_trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params,
update);
}
//boost类的train()函数定义如下(在boost.cpp中):
bool
CvBoost::train( const CvMat* _train_data, int _tflag,
const CvMat* _responses, const CvMat* _var_idx,
const CvMat* _sample_idx, const CvMat* _var_type,
const CvMat* _missing_mask,
CvBoostParams _params, bool _update )
{//顺着来,到了这里,_train_data是训练数据,每行对应到一个特征每列对应到一个样本;_tflag表明了训练数据矩阵的每列对应到一个样本;
//_responsens是各样本对应的类标签;_var_idx是特征索引(序号),_sample_idx是样本索引,_var_type在这里表示按特征响应排序;_missing_mask不知何意;
//_params保存训练得到的检测器;_update为false。这里使用CvBoost.tree->train()函数训练每一个弱分类器
//
bool ok = false;
CvMemStorage* storage = 0;
CV_FUNCNAME( "CvBoost::train" );
__BEGIN__;
int i;
set_params( _params );//初始化检测器参数
cvReleaseMat( &active_vars );
cvReleaseMat( &active_vars_abs );
if( !_update || !data ) //准备好训练用的数据,并确定只包含正负样本两类,分配保存弱分类器的存储空间
{
clear();
data = new CvDTreeTrainData( _train_data, _tflag, _responses, _var_idx, //准备训练数据,但是这里怎么还要用到boost的参数_params呢?
_sample_idx, _var_type, _missing_mask, _params, true, true );
if( data->get_num_classes() != 2 )
CV_ERROR( CV_StsNotImplemented,
"Boosted trees can only be used for 2-class classification." );
CV_CALL( storage = cvCreateMemStorage() );
weak = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvBoostTree*), storage ); //这是CvBoost类中保存弱分类器的向量?
storage = 0;
}
else
{
data->set_data( _train_data, _tflag, _responses, _var_idx,
_sample_idx, _var_type, _missing_mask, _params, true, true, true );
}
if ( (_params.boost_type == LOGIT) || (_params.boost_type == GENTLE) )
data->do_responses_copy();
update_weights( 0 ); //将各样本权重平均分配
for( i = 0; i < params.weak_count; i++ ) //训练weak_count个弱分类器
{
CvBoostTree* tree = new CvBoostTree;
if( !tree->train( data, subsample_mask, this ) ) //主要的训练函数,subsample_mask似乎是一个输出参数,查了其初始值是值为0的指针,记录弱分类器正确分类的样本,也许初始值是全0的向量?
//第三个参数是训练出的弱分类器要连接的‘宿主’分类器
{
delete tree;
break;
}
//cvCheckArr( get_weak_response());
cvSeqPush( weak, &tree );
update_weights( tree ); //这里是不是根据训练出的弱分类器的分类情况调整各样本的权重?
trim_weights();
if( cvCountNonZero(subsample_mask) == 0 )
break;
}
if(weak->total > 0)//释放存储空间
{
get_active_vars(); // recompute active_vars* maps and condensed_idx's in the splits.
data->is_classifier = true;
data->free_train_data();
ok = true;
}
else
clear();
__END__;
return ok;
}
//CvBoostTree::train()函数定义如下,它用来训练单个弱分类器,它进一步调用了CvDTree::do_train()函数:
CvBoostTree::train( CvDTreeTrainData* _train_data,
const CvMat* _subsample_idx, CvBoost* _ensemble )
{
clear();
ensemble = _ensemble;
data = _train_data;
data->shared = true;
return do_train( _subsample_idx );
}
//CvDTree::do_train()函数定义如下(在文件tree.cpp中,头文件为ml.hpp):
bool CvDTree::do_train( const CvMat* _subsample_idx )
{
bool result = false;
CV_FUNCNAME( "CvDTree::do_train" );
__BEGIN__;
root = data->subsample_data( _subsample_idx ); //明显是选择参与训练的样本
CV_CALL( try_split_node(root));
if( root->split )
{
CV_Assert( root->left );
CV_Assert( root->right );
if( data->params.cv_folds > 0 )
CV_CALL( prune_cv() );
if( !data->shared )
data->free_train_data();
result = true;
}
__END__;
return result;
}
//do_train()的核心函数如下:
CvDTreeNode* CvDTreeTrainData::subsample_data( const CvMat* _subsample_idx )
{
CvDTreeNode* root = 0;
CvMat* isubsample_idx = 0;
CvMat* subsample_co = 0;
bool isMakeRootCopy = true;
CV_FUNCNAME( "CvDTreeTrainData::subsample_data" );
__BEGIN__;
if( !data_root )
CV_ERROR( CV_StsError, "No training data has been set" );
if( _subsample_idx )
{
CV_CALL( isubsample_idx = cvPreprocessIndexArray( _subsample_idx, sample_count )); //如果已训练出了一些弱分类器,则在这里进行一定的处理。_subsample_idx只能是一个行向量或者是列向量
//_subsample_idx中保存的可能是选中的样本的索引,也可能长度为sample_count的表明选择的'0''1'掩膜,但
//输出只包含了选择的样本的编号,并且进行了排序。
if( isubsample_idx->cols + isubsample_idx->rows - 1 == sample_count ) //isubsample_idx是一个指向行向量或者列向量的指针,这里验证元素个数与样本数是否相等。
{
const int* sidx = isubsample_idx->data.i;
for( int i = 0; i < sample_count; i++ )
{
if( sidx[i] != i )
{
isMakeRootCopy = false; //若尚无任何弱分类器,则'isMakeRootCopy = true',
break;
}
}
}
else
isMakeRootCopy = false;
}
if( isMakeRootCopy )
{
// make a copy of the root node
CvDTreeNode temp;
int i;
root = new_node( 0, 1, 0, 0 );
temp = *root;
*root = *data_root;
root->num_valid = temp.num_valid;
if( root->num_valid )
{
for( i = 0; i < var_count; i++ )
root->num_valid[i] = data_root->num_valid[i];
}
root->cv_Tn = temp.cv_Tn;
root->cv_node_risk = temp.cv_node_risk;
root->cv_node_error = temp.cv_node_error;
}
else
{
int* sidx = isubsample_idx->data.i;
// co - array of count/offset pairs (to handle duplicated values in _subsample_idx)
int* co, cur_ofs = 0;
int vi, i;
int workVarCount = get_work_var_count(); //得到已使用的特征个数?
int count = isubsample_idx->rows + isubsample_idx->cols - 1; //该弱分类器判断为正的样本个数
root = new_node( 0, count, 1, 0 );
CV_CALL( subsample_co = cvCreateMat( 1, sample_count*2, CV_32SC1 ));
cvZero( subsample_co );
co = subsample_co->data.i;
for( i = 0; i < count; i++ )
co[sidx[i]*2]++;
for( i = 0; i < sample_count; i++ )
{
if( co[i*2] )
{
co[i*2+1] = cur_ofs;
cur_ofs += co[i*2];
}
else
co[i*2+1] = -1;
}
cv::AutoBuffer<uchar> inn_buf(sample_count*(2*sizeof(int) + sizeof(float)));
for( vi = 0; vi < workVarCount; vi++ )
{
int ci = get_var_type(vi);
if( ci >= 0 || vi >= var_count )
{
int num_valid = 0;
const int* src = CvDTreeTrainData::get_cat_var_data( data_root, vi, (int*)(uchar*)inn_buf );
if (is_buf_16u)
{
unsigned short* udst = (unsigned short*)(buf->data.s + root->buf_idx*get_length_subbuf() +
vi*sample_count + root->offset);
for( i = 0; i < count; i++ )
{
int val = src[sidx[i]];
udst[i] = (unsigned short)val;
num_valid += val >= 0;
}
}
else
{
int* idst = buf->data.i + root->buf_idx*get_length_subbuf() +
vi*sample_count + root->offset;
for( i = 0; i < count; i++ )
{
int val = src[sidx[i]];
idst[i] = val;
num_valid += val >= 0;
}
}
if( vi < var_count )
root->set_num_valid(vi, num_valid);
}
else
{
int *src_idx_buf = (int*)(uchar*)inn_buf;
float *src_val_buf = (float*)(src_idx_buf + sample_count);
int* sample_indices_buf = (int*)(src_val_buf + sample_count);
const int* src_idx = 0;
const float* src_val = 0;
get_ord_var_data( data_root, vi, src_val_buf, src_idx_buf, &src_val, &src_idx, sample_indices_buf );
int j = 0, idx, count_i;
int num_valid = data_root->get_num_valid(vi);
if (is_buf_16u)
{
unsigned short* udst_idx = (unsigned short*)(buf->data.s + root->buf_idx*get_length_subbuf() +
vi*sample_count + data_root->offset);
for( i = 0; i < num_valid; i++ )
{
idx = src_idx[i];
count_i = co[idx*2];
if( count_i )
for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ )
udst_idx[j] = (unsigned short)cur_ofs;
}
root->set_num_valid(vi, j);
for( ; i < sample_count; i++ )
{
idx = src_idx[i];
count_i = co[idx*2];
if( count_i )
for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ )
udst_idx[j] = (unsigned short)cur_ofs;
}
}
else
{
int* idst_idx = buf->data.i + root->buf_idx*get_length_subbuf() +
vi*sample_count + root->offset;
for( i = 0; i < num_valid; i++ )
{
idx = src_idx[i];
count_i = co[idx*2];
if( count_i )
for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ )
idst_idx[j] = cur_ofs;
}
root->set_num_valid(vi, j);
for( ; i < sample_count; i++ )
{
idx = src_idx[i];
count_i = co[idx*2];
if( count_i )
for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ )
idst_idx[j] = cur_ofs;
}
}
}
}
// sample indices subsampling
const int* sample_idx_src = get_sample_indices(data_root, (int*)(uchar*)inn_buf);
if (is_buf_16u)
{
unsigned short* sample_idx_dst = (unsigned short*)(buf->data.s + root->buf_idx*get_length_subbuf() +
workVarCount*sample_count + root->offset);
for (i = 0; i < count; i++)
sample_idx_dst[i] = (unsigned short)sample_idx_src[sidx[i]];
}
else
{
int* sample_idx_dst = buf->data.i + root->buf_idx*get_length_subbuf() +
workVarCount*sample_count + root->offset;
for (i = 0; i < count; i++)
sample_idx_dst[i] = sample_idx_src[sidx[i]];
}
}
__END__;
cvReleaseMat( &isubsample_idx );
cvReleaseMat( &subsample_co );
return root;
}
//do_train()另一个核心函数如下:
void CvDTree::try_split_node( CvDTreeNode* node )
{
CvDTreeSplit* best_split = 0;
int i, n = node->sample_count, vi;
bool can_split = true;
double quality_scale;
calc_node_value( node );
if( node->sample_count <= data->params.min_sample_count ||
node->depth >= data->params.max_depth )
can_split = false;
if( can_split && data->is_classifier )
{
// check if we have a "pure" node,
// we assume that cls_count is filled by calc_node_value()
int* cls_count = data->counts->data.i;
int nz = 0, m = data->get_num_classes();
for( i = 0; i < m; i++ )
nz += cls_count[i] != 0;
if( nz == 1 ) // there is only one class
can_split = false;
}
else if( can_split )
{
if( sqrt(node->node_risk)/n < data->params.regression_accuracy )
can_split = false;
}
if( can_split )
{
best_split = find_best_split(node);
// TODO: check the split quality ...
node->split = best_split;
}
if( !can_split || !best_split )
{
data->free_node_data(node);
return;
}
quality_scale = calc_node_dir( node );
if( data->params.use_surrogates )
{
// find all the surrogate splits
// and sort them by their similarity to the primary one
for( vi = 0; vi < data->var_count; vi++ )
{
CvDTreeSplit* split;
int ci = data->get_var_type(vi);
if( vi == best_split->var_idx )
continue;
if( ci >= 0 )
split = find_surrogate_split_cat( node, vi );
else
split = find_surrogate_split_ord( node, vi );
if( split )
{
// insert the split
CvDTreeSplit* prev_split = node->split;
split->quality = (float)(split->quality*quality_scale);
while( prev_split->next &&
prev_split->next->quality > split->quality )
prev_split = prev_split->next;
split->next = prev_split->next;
prev_split->next = split;
}
}
}
split_node_data( node );
try_split_node( node->left );
try_split_node( node->right );
}