- 博客(10)
- 收藏
- 关注
原创 机器学习常用专业术语(英汉)
机器学习常用的专业术语说明:以下术语会不断更新补充,建议收藏多看、增强记忆,共同进步。Artificial intelligence(AI) —— 人工智能Machine learning(ML) —— 机器学习Neural Networks —— 神经网络Deep learning —— 深度学习Supervised learning —— 监督学习regression —— 回归classification —— 分类Unsupervised learning —— 无监督学习clu
2020-11-05 11:35:07 2730
原创 梯度下降算法的应用和技巧(Gradient decent)
什么是多元线性回归(multivariate linear regression)概念假设函数(hypothesis function)多特征梯度下降算法概念多元线性回归是多个变量(Multiple features)的线性回归。以下图为例:其中,我们通过变量x1~x4对房子的价格price进行预测,“多元”指的便是多个特征值。假设函数(hypothesis function)与一元线性回归所不同的,多元线性回归的特征值(features)有所增加,如下所示:为了便于向量表示,我们不妨假设存
2020-11-07 15:51:37 1445
原创 机器学习:小白入门线性代数(Linear Algebra)
小白入门线性代数矩阵和向量(Matrices and vectors)矩阵的加法和乘法矩阵的加法矩阵的数乘矩阵的乘法矩阵的逆和转置(inverse and transpose)单位矩阵(Identity matrix)矩阵的逆矩阵的转置矩阵和向量(Matrices and vectors)什么是矩阵(Matrix)?矩阵就是二维的数组。一维数组可以表示为[1,2,3,…],二维数组便是在一维数组的基础上附加一维,即A=[1,2,34,5,67,8,9]也可用分号代表分行,A=[1,2,3;4,5
2020-11-05 17:55:23 531
原创 轻松入门梯度下降算法(Gradient Descent)
轻松入门梯度下降算法概要梯度下降算法是将代价函数(cost function)J最小化的一种算法, 它被广泛的应用于机器学习领域中的众多领域。假设有一个代价函数J(θ0, θ1),也许这是一个线性回归的代价函数,也许是一些其他函数,要使其最小化就需要用一个算法最小化函数J(θ0, θ1) 。梯度下降算法可应用于多种多样的函数求解,为便于理解,以两个参数为例(当然显示处理数据中往往是多维的),如下图所示:不妨将上图假设为山群,我们的目标是找到山的最低点,假定我们站在某个初始点上,我们要做的便是环顾
2020-11-04 20:20:49 840
原创 两分钟快速理解成本函数(cost function)
对成本函数(cost function)的理解成本函数是用以衡量假设函数h(x)准确性的工具。直接上公式,是不是有种熟悉感,最小二乘法,没错,对比理解一下就好了。该函数也被称为“平方误差函数”或“均方误差”。借用一张吴恩达机器学习的图片:因此,我们应尽量减少成本函数,使散射点与该线的平均垂直垂直距离最小。最后贴成本函数的图片:上图是成本函数J(θ1)与单个变量的关系,显然我们取其最小值,当θ1=1时。上图是成本函数J(θ1,θ2)与两个变量的关系,当然我们也可以得到一个最小值。(多维变
2020-11-03 16:52:44 18028 2
原创 机器学习模型表示
机器学习模型(Model Representation)为了建立一个将来使用的概念,我们使用x(i)表示输入要素,y(i)表示目标变量,即我们需要预测的值。(x(i),y(i))(i=1,2,3…,m)则称为训练集(training set),使用X表示输入值的空间,并使用Y表示输出值的空间。更正式地描述监督学习问题,我们的目标是给定训练集,学习一个函数h:X→Y,以便h(x)是对应y值的“良好”预测因子。 由于历史原因,此函数h称为假设。 该过程如下图所示:(吴恩达教授机器学习笔记)...
2020-11-03 15:46:22 559
原创 监督学习和无监督学习有何不同?
监督学习和无监督学习监督学习(Supervised Learning)回归(regression)分类(classification)无监督学习(Unsupervised Learning)聚类(Clustering)非集群(Non-clustering)监督学习(Supervised Learning)在监督学习中,我们根据已有的数据集,已知我们的正确输出,并且认为输入和输出之间存在一定的关系。监督学习问题分为“回归”和“分类”问题。回归(regression)在回归问题中,我们试图预测连续输出中
2020-11-02 17:57:33 677
原创 什么是机器学习(ML)
什么是机器学习(ML)Arthur Samuel的理解Tom Mitchell的理解Arthur Samuel的理解“the field of study that gives computers the ability to learn without being explicitly programmed.”也就是说,“研究领域使计算机无需进行明确编程即可学习”。这是之前提出的非正式的定义。Tom Mitchell的理解A computer program is said to lear
2020-11-02 16:51:17 1811
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人