leetcode 21天动态规划入门——从0到0.5【Day08】炒股上瘾了?

本文介绍了两个使用动态规划解决的股票交易问题,包括考虑手续费的情况。在第一个问题中,股票交易后需要等待一天才能再次购买,而在第二个问题中,每次交易都会产生手续费。通过动态规划的状态转移方程,可以找到在这些约束下的最大利润。示例和代码实现清晰展示了问题的解决过程。
摘要由CSDN通过智能技术生成

写在前面

接着昨天’炒股’的劲,再刷一下这几道题,你会发现你已经完全掌握了‘炒股’的动态规划的相应提醒了,话不多说直接上题目。

题目

题目一

  1. 买卖股票的最佳时机含手续费
给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。​
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易
(多次买卖一支股票):
你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
示例

示例1:

输入: [1,2,3,0,2]
输出: 3 
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
思路

不就多了个冷冻期嘛,多给他加上一种冷冻期的情况就好了~

代码实现
class Solution {
    public int maxProfit(int[] prices) {
    	//未持有股票时,持有股票时,冷冻期时
        int [][]dp = new int[prices.length][3];
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        dp[0][2] = 0;
        //动态转化方程
        for (int i = 1 ; i< prices.length;i++){
            dp[i][0] = Math.max(dp[i-1][0],dp[i-1][2]);
            dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);
            dp[i][2] = dp[i-1][1] + prices[i];
        }
        return Math.max(dp[prices.length-1][0],dp[prices.length-1][2]);
    }
}
执行效率

在这里插入图片描述

题目二

  1. 买卖股票的最佳时机含手续费
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;
整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。
如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,
每笔交易你只需要为支付一次手续费。
示例

示例1:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:  
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

提示

1 <= prices.length <= 5 * 10^4
1 <= prices[i] < 5 * 10^4
0 <= fee < 5 * 10^4

思路

无疑就是在卖出股票的时候要额外花费一定费用

代码实现
class Solution {
    public int maxProfit(int[] prices, int fee) {
        int dp[][] = new int [prices.length][2];
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        for (int i = 1 ;i< prices.length;i++){
        //动态转化方程做了一点修改
            dp[i][0] = Math.max(dp[i-1][0],dp[i-1][1] + prices[i] - fee);
            dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0] - prices[i]);
        }
        return dp[prices.length-1][0];
    }
}
执行结果

在这里插入图片描述

写在后面

今日的题说白就是昨天的题改了一点点,没有新的知识点

所以今天就比较简答了 如果有问题 记得 call me

最后

每天进步点 每天收获点

愿诸君 事业有成 学有所获

如果觉得不错 别忘啦一键三连哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alascanfu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值