写在前面
接着昨天’炒股’的劲,再刷一下这几道题,你会发现你已经完全掌握了‘炒股’的动态规划的相应提醒了,话不多说直接上题目。
题目
题目一
- 买卖股票的最佳时机含手续费
给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易
(多次买卖一支股票):
你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
示例
示例1:
输入: [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
思路
不就多了个冷冻期嘛,多给他加上一种冷冻期的情况就好了~
代码实现
class Solution {
public int maxProfit(int[] prices) {
//未持有股票时,持有股票时,冷冻期时
int [][]dp = new int[prices.length][3];
dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[0][2] = 0;
//动态转化方程
for (int i = 1 ; i< prices.length;i++){
dp[i][0] = Math.max(dp[i-1][0],dp[i-1][2]);
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);
dp[i][2] = dp[i-1][1] + prices[i];
}
return Math.max(dp[prices.length-1][0],dp[prices.length-1][2]);
}
}
执行效率
题目二
- 买卖股票的最佳时机含手续费
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;
整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。
如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,
每笔交易你只需要为支付一次手续费。
示例
示例1:
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
提示
1 <= prices.length <= 5 * 10^4
1 <= prices[i] < 5 * 10^4
0 <= fee < 5 * 10^4
思路
无疑就是在卖出股票的时候要额外花费一定费用
代码实现
class Solution {
public int maxProfit(int[] prices, int fee) {
int dp[][] = new int [prices.length][2];
dp[0][0] = 0;
dp[0][1] = -prices[0];
for (int i = 1 ;i< prices.length;i++){
//动态转化方程做了一点修改
dp[i][0] = Math.max(dp[i-1][0],dp[i-1][1] + prices[i] - fee);
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0] - prices[i]);
}
return dp[prices.length-1][0];
}
}
执行结果
写在后面
今日的题说白就是昨天的题改了一点点,没有新的知识点
所以今天就比较简答了 如果有问题 记得 call me
最后
每天进步点 每天收获点
愿诸君 事业有成 学有所获
如果觉得不错 别忘啦一键三连哦~