📑本篇内容:《剑指Offer》——栈与队列简单应用 如果遇到栈与队列的相关问题不妨多来个辅助栈
📘 文章专栏:《剑指offer》 面试高频数据结构与算法
🎬最近更新:2022年1月21日 《剑指Offer》——栈与队列简单应用 如果遇到栈与队列的相关问题不妨多来个辅助栈
🙊个人简介:一只二本院校在读的大三程序猿,本着注重基础,打卡算法,分享技术作为个人的经验总结性的博文博主,虽然可能有时会犯懒,但是还是会坚持下去的,如果你很喜欢博文的话,建议看下面一行~(疯狂暗示QwQ)
🌇点赞 👍 收藏 ⭐留言 📝 一键三连 关爱程序猿,从你我做起
本文目录
剑指Offer——栈与队列简单应用
🙊写在前面🙊
哇咔咔~小付来了哦!因为今天的leetcode题太过于困难,用bfs解题时
,超时
,超内存
,能遇到的错误好家伙我全遇到了
一遍,索性就直接cv工程师
的操作完成了今日的每日一题,思路不难,但是确实恼人
,因为想了今天怕是出不了今天的题解了
,所以以后如果出现出不了的题解,咱就来巩固面试中的数据结构与算法的经典题
,巩固加深思维
,未尝不是一件好事,所以就有了下面这篇文章咯!
1、剑指Offer09.用两个栈实现队列
用
两个栈实现一个队列
。队列的声明如下,请实现它的两个函数appendTail
和deleteHead
,分别完成在队列尾部插入整数
和在队列头部删除整数
的功能。(若队列中没有元素
,deleteHead 操作返回 -1
)
示例
示例1:
输入:
["CQueue","appendTail","deleteHead","deleteHead"]
[[],[3],[],[]]
输出:[null,null,3,-1]
示例2:
输入:
["CQueue","deleteHead","appendTail","appendTail","deleteHead","deleteHead"]
[[],[],[5],[2],[],[]]
输出:[null,-1,null,null,5,2]
提示
1 <= values <= 10000
最多会对 appendTail、deleteHead 进行 10000 次调用
📝思路📝
我们回忆一下栈与队列的特性
:
-
栈:
先入后出(FILO)
-
队列:
先入先出(FIFO)
简单点的说就是栈会把数据进出的顺序反过来
,那么栈中数据是由队列反过来的
,要栈再反过来
就可以得到与之对应的队列
了。和负负得正是一样的道理。
⭐代码实现⭐
class CQueue {
Stack<Integer> stackForIn;
Stack<Integer> stackForOut;
//初始化双栈来实现队列
public CQueue() {
stackForIn = new Stack<>();
stackForOut = new Stack<>();
}
//如果是加入直接添加到队尾即可 也就是stackForIn栈顶
public void appendTail(int value) {
stackForIn.push(value);
}
//如果是出队肯定要出去栈底的元素,我们可以将其反向添加到stackForOut栈
public int deleteHead() {
if (stackForIn.isEmpty() && stackForOut.isEmpty())return -1;
//如果当前输出栈中还有元素则说明队列中的队顶还没走完
if (stackForOut.isEmpty()){
//如果输入栈中还有元素则需要将元素push到输出栈当中
while(!stackForIn.isEmpty()){
stackForOut.push(stackForIn.pop());
}
}
//返回输出栈弹出的值就是队首
return stackForOut.pop();
}
}
运行结果
2、剑指Offer30.包含min函数的栈
设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。
- push(x) —— 将元素 x 推入栈中。
- pop() —— 删除栈顶的元素。
- top() —— 获取栈顶元素。
- getMin() —— 检索栈中的最小元素。
示例
示例1:
输入:
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]
输出:
[null,null,null,null,-3,null,0,-2]
解释:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.getMin(); --> 返回 -2.
提示
pop、top 和 getMin 操作总是在 非空栈 上调用。
📝思路📝
有了上一题双栈模拟队列,那么这题考虑双栈是否也能解决呢?
对比上题,这题反而更加容易思考
因为模拟的就是栈无需将其反复转换
,栈就是栈,那么我们是否可以将:
- 第一个栈就是用来
记录数据的题中栈
。 - 第二个栈用来记录栈中
在当前位置时栈中的最小值
上述两题都考虑用双栈方式 其一点是为了我们可以会用到辅助栈的思想来解决问题
⭐代码实现⭐
class MinStack {
Stack <Integer > stack ;
Stack <Integer > helpStack;
/** initialize your data structure here. */
//初始化双栈,一个记录栈中数据,一个用作辅助栈
public MinStack() {
stack = new Stack<>();
helpStack = new Stack<>();
//先将辅助栈初始话
helpStack.push(Integer.MAX_VALUE);
}
public void push(int val) {
//添加值的时候我们可以将当前添加的值和位于栈顶的值进行比较取最小值,记录当前所属位置时栈中的最小值
helpStack.push(Math.min(helpStack.peek(), val));
stack.push(val);
}
public void pop() {
//双栈同时弹出
stack.pop();
helpStack.pop();
}
public int top() {
//栈的栈顶值
return stack.peek();
}
public int getMin() {
//返回辅助栈栈顶即为当前栈所处位置的栈最小值
return helpStack.peek();
}
}
运行结果
🙊写在最后🙊
2022-1-21 今天小付打卡了哦~
美好的日出 美好的山河
都因有你存在 而璀璨 耀眼
最后
每天进步点 每天收获点
愿诸君 事业有成 学有所获
如果觉得不错 别忘啦一键三连哦~