24 _ 二叉树基础(下):有了如此高效的散列表,为什么还需要二叉树?

本文深入探讨了二叉查找树(BST),包括其查找、插入和删除操作,以及在面对散列表的高效性能时,BST依然存在的理由。BST在动态数据集合中提供快速操作,尽管散列表的时间复杂度为O(1),但在某些场景下,BST的有序数据输出、稳定性能和构造简单性使其成为散列表的有力补充。
摘要由CSDN通过智能技术生成

上一节我们学习了树、二叉树以及二叉树的遍历,今天我们再来学习一种特殊的二叉树,二叉查找树。二叉查找树最大的特点就是,支持动态数据集合的快速插入、删除、查找操作。

我们之前说过,散列表也是支持这些操作的,并且散列表的这些操作比二叉查找树更高效,时间复杂度是O(1)。既然有了这么高效的散列表,使用二叉树的地方是不是都可以替换成散列表呢?有没有哪些地方是散列表做不了,必须要用二叉树来做的呢?

带着这些问题,我们就来学习今天的内容,二叉查找树!

二叉查找树(Binary Search Tree)

二叉查找树是二叉树中最常用的一种类型,也叫二叉搜索树。顾名思义,二叉查找树是为了实现快速查找而生的。不过,它不仅仅支持快速查找一个数据,还支持快速插入、删除一个数据。它是怎么做到这些的呢?

这些都依赖于二叉查找树的特殊结构。二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值。 我画了几个二叉查找树的例子,你一看应该就清楚了。

前面我们讲到,二叉查找树支持快速查找、插入、删除操作,现在我们就依次来看下,这三个操作是如何实现的。

1.二叉查找树的查找操作

首先,我们看如何在二叉查找树中查找一个节点。我们先取根节点,如果它等于我们要查找的数据,那就返回。如果要查找的数据比根节点的值小,那就在左子树中递归查找;如果要查找的数据比根节点的值大,那就在右子树中递归查找。

这里我把查找的代码实现了一下,贴在下面了,结合代码,理解起来会更加容易。

public class BinarySearchTree {
  private Node tree;

  public Node find(int data) {
    Node p = tree;
    while (p != null) {
      if (data < p.data) p = p.left;
      else if (data > p.data) p = p.right;
      else return p;
    }
    return null;
  }

  public static class Node {
    private int data;
    private Node left;
    private Node right;

    public Node(int data) {
      this.data = data;
    }
  }
}

2.二叉查找树的插入操作

二叉查找树的插入过程有点类似查找操作。新插入的数据一般都是在叶子节点上,所以我们只需要从根节点开始,依次比较要插入的数据和节点的大小关系。

如果要插入的数据比节点的数据大,并且节点的右子树为空,就将新数据直接插

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值