线性表概述 Linear List
在了解线性表之前,我们首先了解一下什么是线性结构。线性结构的特点是:在数据元素的非空有限集中
- 存在唯一的一个被称为“第一个”的数据元素。
- 存在唯一的一个被称为“最后一个”的数据元素。
- 除第一个外,集合中的每个数据元素均只有一个前驱。
- 除最后一个外,集合中的每个数据元素均只有一个后驱。
1 线性表的定义
线性表是一种最常用且最简单的数据结构。简单来说,一个线性表是
n
n
n
(
n
≥
0
)
(n \ge 0)
(n≥0) 个数据元素的有限序列,其中
n
n
n 为表长,当
n
=
0
n=0
n=0 时线性表是一个空表。若用
L
L
L 命名线性表,则其一般表示为
L
=
(
a
1
,
a
2
,
…
,
a
i
,
a
i
+
1
,
…
,
a
n
)
L = (a_1, a_2, \dots, a_i, a_{i+1}, \dots, a_n)
L=(a1,a2,…,ai,ai+1,…,an)
其中
a
1
a_1
a1 又称为表头元素,
a
n
a_n
an 又称为表尾元素,
i
i
i 称为数据元素
a
i
a_i
ai 在线性表中的位序。除开表头元素,任意元素有且仅有一个前驱;除开表尾元素,任意元素有且仅有一个后驱。这种线性有序的逻辑特征就是线性表名字的由来。
在生活中,我们经常用到线性表这样的数据结构。例如,包含26个英文字母的字母表 ( A , B , C , … , Z ) (A, B, C, \dots, Z) (A,B,C,…,Z) 就是一个线性表,其数据元素是单个字母字符。又比如,某个中学对学生年龄的统计 ( 12 , 12 , 13 , 14 , 12 ) (12, 12, 13, 14, 12) (12,12,13,14,12) ,其数据元素是整数。在稍复杂的情况下,线性表中的数据元素还可以由若干个数据项构成。例如某医院对病人的信息记录由五个部分组成:姓名、身份证号、性别、年龄和健康状况。在这种情况下,我们常把数据元素称为记录(Record),含有大量记录的线性表又称为文件(File)
姓名 | 身份证号 | 性别 | 年龄 | 健康状况 |
---|
通过上述例子我们可以归纳,不同线性表中的数据元素的类型可以是不同的,但是在同一线性表中,所有数据元素必定具有相同特性(或属于同一数据类型)。
同时,我们可以发现线性表讨论的只是各数据元素之间的逻辑关系,并不涉及数据元素的存储和运算,因此线性表是一种逻辑结构。
总结一下,线性表有如下特点:
- 表中元素个数有限。
- 表中元素具有逻辑上的顺序性,有其先后次序。
- 表中元素都是数据元素。
- 表中元素的数据类型都相同,这意味着每个元素占有相同大小的存储空间。
- 表中元素具有抽象性,即仅讨论元素间的逻辑关系。
2 线性表的基本操作
一个数据结构的基本操作是指其最核心,最基本的操作。其他较复杂的操作都可以通过调用其基本操作来实现。
2.1 主要操作
线性表的主要操作如下:
主要操作 | 操作结果 |
---|---|
InitList(&L) | 初始化操作,构造一个空的线性表 |
DestroyList(&L) | 销毁操作,销毁线性表并释放所占用的内存空间 |
ListEmpty(L) | 判空操作,若 L 为空返回True,否则返回False |
ListLength(L) | 求表长操作,返回线性表 L 的长度,即元素个数 |
GetElem(L, i) | 按位查找操作,获取表 L 中第 i 个位置的元素的值 |
LocateElem(L, e) | 按值查找操作,在表中查找具有给定关键字值的元素 |
ListInsert(&L, i , e) | 插入操作,在表的第 i 个位置插入元素 e |
ListDelete(&L, i , &e) | 删除操作,删除表中第 i 个元素的值,并用 e 返回删除元素的值 |
ListPrint(L) | 输出操作,按前后顺序输出线性表 L 的所有元素值 |
2.2 其他常用操作
2.2.1 两表的并集
假设现在有两个线性表 L A LA LA 和 L B LB LB ,要求扩大线性表 L A LA LA ,将存在于线性表 L B LB LB 中而不存在于线性表 L A LA LA 中的数据元素插入到线性表 L A LA LA 中去。
基本思路是从线性表 L B LB LB 中依次取得每个数据元素,并依值在线性表 L A LA LA 中查找,若不存在则插入该数据元素。
2.2.2 两表的合并
假设现在有两个线性表
L
A
LA
LA 和
L
B
LB
LB ,它们的数据元素按值非递减有序排列,现要求将
L
A
LA
LA 和
L
B
LB
LB 归并为一个新的线性表
L
C
LC
LC ,且
L
C
LC
LC 中的元素仍按值非递减有序排列。例如,假设
L
A
=
(
3
,
5
,
8
)
L
B
=
(
2
,
8
,
9
)
\begin{aligned} LA &= (3, 5, 8) \\ LB &= (2, 8, 9) \end{aligned}
LALB=(3,5,8)=(2,8,9)
则
L
C
=
(
2
,
3
,
5
,
8
,
8
,
9
)
\begin{aligned} LC &= (2, 3, 5, 8, 8, 9) \end{aligned}
LC=(2,3,5,8,8,9)
基本思路是先令 L C LC LC 为空表,然后用两个指针 i i i 和 j j j 分别指向 L A LA LA 和 L B LB LB 中的元素,比较元素大小,将更小的元素插入 L C LC LC 中,并将对应的指针后移一位。
相关章节
第一节 【绪论】数据结构的基本概念
第二节 【绪论】算法和算法评价
第三节 【线性表】线性表概述
第四节 【线性表】线性表的顺序表示和实现
第五节 【线性表】线性表的链式表示和实现
第六节 【线性表】双向链表、循环链表和静态链表
第七节 【栈和队列】栈
第八节 【栈和队列】栈的应用
第九节 【栈和队列】栈和递归
第十节 【栈和队列】队列