三、【线性表】线性表概述

线性表概述 Linear List

在了解线性表之前,我们首先了解一下什么是线性结构。线性结构的特点是:在数据元素的非空有限集中

  1. 存在唯一的一个被称为“第一个”的数据元素。
  2. 存在唯一的一个被称为“最后一个”的数据元素。
  3. 除第一个外,集合中的每个数据元素均只有一个前驱。
  4. 除最后一个外,集合中的每个数据元素均只有一个后驱。


1 线性表的定义

线性表是一种最常用且最简单的数据结构。简单来说,一个线性表是 n n n ( n ≥ 0 ) (n \ge 0) (n0) 个数据元素的有限序列,其中 n n n 为表长,当 n = 0 n=0 n=0 时线性表是一个空表。若用 L L L 命名线性表,则其一般表示为
L = ( a 1 , a 2 , … , a i , a i + 1 , … , a n ) L = (a_1, a_2, \dots, a_i, a_{i+1}, \dots, a_n) L=(a1,a2,,ai,ai+1,,an)
其中 a 1 a_1 a1 又称为表头元素, a n a_n an 又称为表尾元素, i i i 称为数据元素 a i a_i ai 在线性表中的位序。除开表头元素,任意元素有且仅有一个前驱;除开表尾元素,任意元素有且仅有一个后驱。这种线性有序的逻辑特征就是线性表名字的由来。

在生活中,我们经常用到线性表这样的数据结构。例如,包含26个英文字母的字母表 ( A , B , C , … , Z ) (A, B, C, \dots, Z) (A,B,C,,Z) 就是一个线性表,其数据元素是单个字母字符。又比如,某个中学对学生年龄的统计 ( 12 , 12 , 13 , 14 , 12 ) (12, 12, 13, 14, 12) (12,12,13,14,12) ,其数据元素是整数。在稍复杂的情况下,线性表中的数据元素还可以由若干个数据项构成。例如某医院对病人的信息记录由五个部分组成:姓名、身份证号、性别、年龄和健康状况。在这种情况下,我们常把数据元素称为记录(Record),含有大量记录的线性表又称为文件(File)

姓名身份证号性别年龄健康状况

通过上述例子我们可以归纳,不同线性表中的数据元素的类型可以是不同的,但是在同一线性表中,所有数据元素必定具有相同特性(或属于同一数据类型)。

同时,我们可以发现线性表讨论的只是各数据元素之间的逻辑关系,并不涉及数据元素的存储和运算,因此线性表是一种逻辑结构。

总结一下,线性表有如下特点:

  • 表中元素个数有限。
  • 表中元素具有逻辑上的顺序性,有其先后次序。
  • 表中元素都是数据元素。
  • 表中元素的数据类型都相同,这意味着每个元素占有相同大小的存储空间。
  • 表中元素具有抽象性,即仅讨论元素间的逻辑关系。


2 线性表的基本操作

一个数据结构的基本操作是指其最核心,最基本的操作。其他较复杂的操作都可以通过调用其基本操作来实现。


2.1 主要操作

线性表的主要操作如下:

主要操作操作结果
InitList(&L)初始化操作,构造一个空的线性表
DestroyList(&L)销毁操作,销毁线性表并释放所占用的内存空间
ListEmpty(L)判空操作,若 L 为空返回True,否则返回False
ListLength(L)求表长操作,返回线性表 L 的长度,即元素个数
GetElem(L, i)按位查找操作,获取表 L 中第 i 个位置的元素的值
LocateElem(L, e)按值查找操作,在表中查找具有给定关键字值的元素
ListInsert(&L, i , e)插入操作,在表的第 i 个位置插入元素 e
ListDelete(&L, i , &e)删除操作,删除表中第 i 个元素的值,并用 e 返回删除元素的值
ListPrint(L)输出操作,按前后顺序输出线性表 L 的所有元素值

2.2 其他常用操作

2.2.1 两表的并集

假设现在有两个线性表 L A LA LA L B LB LB ,要求扩大线性表 L A LA LA ,将存在于线性表 L B LB LB 中而不存在于线性表 L A LA LA 中的数据元素插入到线性表 L A LA LA 中去。

基本思路是从线性表 L B LB LB 中依次取得每个数据元素,并依值在线性表 L A LA LA 中查找,若不存在则插入该数据元素。

2.2.2 两表的合并

假设现在有两个线性表 L A LA LA L B LB LB ,它们的数据元素按值非递减有序排列,现要求将 L A LA LA L B LB LB 归并为一个新的线性表 L C LC LC ,且 L C LC LC 中的元素仍按值非递减有序排列。例如,假设
L A = ( 3 , 5 , 8 ) L B = ( 2 , 8 , 9 ) \begin{aligned} LA &= (3, 5, 8) \\ LB &= (2, 8, 9) \end{aligned} LALB=(3,5,8)=(2,8,9)

L C = ( 2 , 3 , 5 , 8 , 8 , 9 ) \begin{aligned} LC &= (2, 3, 5, 8, 8, 9) \end{aligned} LC=(2,3,5,8,8,9)

基本思路是先令 L C LC LC 为空表,然后用两个指针 i i i j j j 分别指向 L A LA LA L B LB LB 中的元素,比较元素大小,将更小的元素插入 L C LC LC 中,并将对应的指针后移一位。



相关章节

第一节 【绪论】数据结构的基本概念
第二节 【绪论】算法和算法评价
第三节 【线性表】线性表概述
第四节 【线性表】线性表的顺序表示和实现
第五节 【线性表】线性表的链式表示和实现
第六节 【线性表】双向链表、循环链表和静态链表
第七节 【栈和队列】栈
第八节 【栈和队列】栈的应用
第九节 【栈和队列】栈和递归
第十节 【栈和队列】队列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值