关于为什么要进行Matrix normalization

本文介绍了矩阵列归一化的物理意义与数学意义,通过举例解释了为何需要进行归一化处理,并给出了具体的Python实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

物理意义:

比如一个人说的话声音有时候声音很大,有时候很小,为了避免大声音和小声音在运算中过度影响结果,就需要将它们统一拉回一个特定的范畴轨道

数学意义:

本次研究基于18年MCE提供的baseline。该实验中用到了矩阵的列一化。

矩阵的列归一化,就是将矩阵每一列的值,除以每一列所有元素平方和的根号值,这样做的结果就是,矩阵每一列元素的平方和为1了。

 

def length_norm(mat):
    norm_mat = []
    for line in mat:
        temp = line/np.math.sqrt(sum(np.power(line,2)))
        norm_mat.append(temp)
    norm_mat = np.array(norm_mat)
    return norm_mat

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值