JAVA优先队列实现

基于堆的优先队列实现 JAVA

二叉堆是一种特殊的堆,二叉堆是完全二叉树或者是近似完全二叉树。二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子树和右子树都是一个二叉堆。 当父节点的键值总是大于或等于任何一个子节点的键值时为“最大堆”。当父节点的键值总是小于或等于任何一个子节点的键值时为“最小堆”(Wiki)。
本文基于堆实现优先队列,实现过程参考《算法4》。

import java.util.Arrays;

// Key是一个泛型,并且这个泛型已经实现了Comparable接口
public class MaxPQ<Item extends Comparable<Item>> {
    private int N; //堆中元素最大个数
    private Item[] pq; // 存储堆的数组

    public MaxPQ(int maxN) {  // !!! 动态构建数组 插入时判断==N 删除时判断<1/4
        pq = (Item[]) new Comparable[maxN + 1];  //泛型擦除
    }

    public boolean isEmpty() {
        return N == 0;
    }

    public int size() {
        return N;
    }

    // 插入元素
    public void insert(Item item) {
        if (item == null) throw new NullPointerException("The insert element is empty!");
        pq[++N] = item;  // 注意留空 主要是通过*2进行下沉,/2上浮
        swim(N);
    }

    //删除最大元素
    public Item delMax() {
        if (isEmpty()) return null;
        Item max = pq[1];
        swap(1, N);
        pq[--N] = null; // 防止游离
        sink(1);
        return max;
    }

    // 上浮    和父节点比较
    private void swim(int k) {
        while (k > 1 && less(k / 2, k)) {
            swap(k / 2, k);
            k = k / 2;
        }
    }

    // 下沉    和左右子节点比较
    private void sink(int k) {
        while (2 * k <= N) {
            int j = 2 * k;
            if (j < N && less(j, j + 1)) j++;   // 将左右子树最大的找出
            if (!less(k, j)) break;
            swap(k, j);
            k = j;
        }
    }

    // 辅助函数
    // 交换
    private void swap(int i, int j) {
        Item tmp = pq[i];
        pq[i] = pq[j];
        pq[j] = tmp;
    }

    // 是否小于
    private boolean less(int i, int j) {
        return pq[i].compareTo(pq[j]) < 0;
    }

    // toString
    public void printAr() {
        System.out.println(Arrays.toString(pq));
    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值