POJ 3321 Apple Tree(dfs+树状数组)

本文介绍了一种用于查询苹果树上特定子树内苹果数量的算法。通过深度优先搜索(DFS)建立时间戳映射,利用树状数组进行区间查询与更新,解决了苹果生长与摘取的问题。

题目的意思是给你一棵树上面有很多苹果,你可以摘苹果树也会长苹果。让你求出树上某一节点上所有的苹果。

从别人那里看的分析,感觉挺好的:

分析:每个分支其实就是一个节点,先dfs整个树,求出每个节点的时间戳,即每个节点第一次访问的时间和最后一次访问的时间,分别用begin和end记录,以时间戳为编号,则在begin[x]和end[x]之间的编号的节点就是x的子树,以时间戳为树状数组的下标,查询时,只要求第一次访问的编号到最后一次访问的编号之间的和就行了,即sum(end[x])-sum(begin[x]-1);修改时,只要修改第一次访问的编号即可,即update(begin[x])。但是修改前要判断该位置是0或1,0则加1,1则减1。


Apple Tree
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 17220 Accepted: 5222

Description

There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. Kaka likes apple very much, so he has been carefully nurturing the big apple tree.

The tree has N forks which are connected by branches. Kaka numbers the forks by 1 to N and the root is always numbered by 1. Apples will grow on the forks and two apple won't grow on the same fork. kaka wants to know how many apples are there in a sub-tree, for his study of the produce ability of the apple tree.

The trouble is that a new apple may grow on an empty fork some time and kaka may pick an apple from the tree for his dessert. Can you help kaka?

Input

The first line contains an integer N (N ≤ 100,000) , which is the number of the forks in the tree.
The following N - 1 lines each contain two integers u and v, which means fork u and fork v are connected by a branch.
The next line contains an integer M (M ≤ 100,000).
The following M lines each contain a message which is either
"x" which means the existence of the apple on fork x has been changed. i.e. if there is an apple on the fork, then Kaka pick it; otherwise a new apple has grown on the empty fork.
or
"x" which means an inquiry for the number of apples in the sub-tree above the fork x, including the apple (if exists) on the fork x
Note the tree is full of apples at the beginning

Output

For every inquiry, output the correspond answer per line.

Sample Input

3
1 2
1 3
3
Q 1
C 2
Q 1

Sample Output

3
2
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-7
#define M 10001000
#define LL __int64
//#define LL long long
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
const int maxn = 505000;

using namespace std;

int c[maxn];
int n;
int dfs_clock;
int head[maxn];
int first[maxn];
int last[maxn];
int t;
struct node
{
    int v;
    int next;
}f[maxn];

void ADD(int u, int v)
{
    f[t].v = v;
    f[t].next = head[u];
    head[u] = t++;
}

int lowbit(int x)
{
    return x&(-x);
}

void add(int x, int ad)
{
    while(x <= n)
    {
        c[x] += ad;
        x += lowbit(x);
    }
}

int sum(int x)
{
    int cnt = 0;
    while(x > 0)
    {
        cnt += c[x];
        x -= lowbit(x);
    }
    return cnt;
}

void dfs(int u)
{
    first[u] = ++dfs_clock;
    for(int i = head[u]; i != -1; i = f[i].next)
        dfs(f[i].v);
    last[u] = dfs_clock;
}

int main()
{
    int m;
    scanf("%d",&n);
    int u, v;
    t = 0;
    memset(head, -1, sizeof(head));
    for(int i = 1; i < n; i++)
    {
        scanf("%d %d",&u, &v);
        ADD(u, v);
    }
    dfs_clock = 0;
    dfs(1);
    memset(c, 0 , sizeof(c));
    for(int i = 1; i <= n; i++)
        add(i, 1);
    scanf("%d",&m);
    for(int i = 1; i <= m; i++)
    {
        char str;
        int x;
        scanf("%*c%c",&str);
        if(str == 'Q')
        {
            scanf("%d",&x);
            int ans = sum(last[x])-sum(first[x]-1);
            printf("%d\n",ans);
        }
        else
        {
            scanf("%d",&x);
            if(sum(first[x])-sum(first[x]-1))
                 add(first[x], -1);
             else
                add(first[x], 1);
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值