10、量子经典算法解析:从 Deutsch-Jozsa 到 Bernstein-Vazirani

量子经典算法解析:从 Deutsch-Jozsa 到 Bernstein-Vazirani

1. 量子算法概述

量子计算领域有一系列基础算法,它们在量子计算早期被开发出来,首次证明了量子计算机在计算速度上的显著提升。这些算法被称为经典算法,虽然部分算法所需的量子计算机尚未问世,但对它们的分析能加深我们对未来量子计算可能性的理解。而且,这些算法的变体可用于证明近期量子计算机在无噪声甚至有噪声环境下的优势。

部分算法属于“黑盒”或“查询模型”量子算法。在这类算法中,存在一个未知的底层函数,但我们可以构建一个名为预言机(oracle)的函数,通过查询它来确定特定输入与输出之间的关系。具体而言,我们可以用量子寄存器中的特定输入查询预言机函数,并将其输出可逆地写入该寄存器。例如,我们有预言机 $O_f$ 满足:
$O_f (|x\rangle|y\rangle) = |x \oplus f (y)\rangle$
其中 $\oplus$ 表示模 2 加法。可以看出 $O_f$ 是酉(可逆)的,因为它是自逆的。

查询模型的意义在于,它为算法的步骤(门)数量提供了下限。每个查询至少是算法中的一步,如果用查询都无法高效完成,那么用门操作更不可能高效完成。此外,查询模型还可用于证明相对于预言机的快速量子算法。我们可以让量子计算机和经典计算机访问同一个预言机,比较它们的性能,从而证明相对于预言机的计算优势。例如 Deutsch 算法和 Berstein - Vazirani 算法就具有可证明的相对加速。

如果能找到一种方法,以输入寄存器大小的多项式规模的门来实例化预言机,就可以实现“真正”(非相对)的量子加速,Shor 算法在量子因式分解中就是如此。Shor

内容概要:本文围绕基于最优控制的固定翼飞机着陆控制器设计展开研究,利用Matlab进行仿真与代码实现,旨在通过最优控制理论提升飞机在着陆阶段的稳定性与精度。文中详细阐述了固定翼飞机的动力学建模过程,构建了适用于着陆阶段的状态空间模型,并设计了基于线性二次型调节器(LQR)或模型预测控制(MPC)等最优控制策略【固定翼飞机】基于最优控制的固定翼飞机着陆控制器设计研究(Matlab代码实现)的控制器。通过对系统性能指标的优化,实现了对飞机俯仰角、高度、速度等关键参数的精确控制,有效应对风扰等外部不确定性因素。同时,文章提供了完整的Matlab代码实现流程,便于读者复现与进一步研究。; 适合人群:具备自动控制理论基础、飞行器动力学知识及Matlab编程能力的高校研究生、科研人员及航空领域工程技术人员。; 使用场景及目标:① 掌握固定翼飞机着陆阶段的动力学建模方法;② 学习并实现基于LQR或MPC的最优控制器设计;③ 利用Matlab/Simulink完成控制系统仿真与性能验证;④ 为飞行控制算法开发与航空器自动化着陆系统研究提供技术参考。; 阅读建议:建议读者结合现代控制理论教材,先理解最优控制基本原理,再逐步跟进文中的建模与控制器设计步骤,动手运行并调试所提供的Matlab代码,以加深对控制策略实际效果的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值