量子经典算法解析:从 Deutsch-Jozsa 到 Bernstein-Vazirani
1. 量子算法概述
量子计算领域有一系列基础算法,它们在量子计算早期被开发出来,首次证明了量子计算机在计算速度上的显著提升。这些算法被称为经典算法,虽然部分算法所需的量子计算机尚未问世,但对它们的分析能加深我们对未来量子计算可能性的理解。而且,这些算法的变体可用于证明近期量子计算机在无噪声甚至有噪声环境下的优势。
 部分算法属于“黑盒”或“查询模型”量子算法。在这类算法中,存在一个未知的底层函数,但我们可以构建一个名为预言机(oracle)的函数,通过查询它来确定特定输入与输出之间的关系。具体而言,我们可以用量子寄存器中的特定输入查询预言机函数,并将其输出可逆地写入该寄存器。例如,我们有预言机 $O_f$ 满足: 
 $O_f (|x\rangle|y\rangle) = |x \oplus f (y)\rangle$ 
 其中 $\oplus$ 表示模 2 加法。可以看出 $O_f$ 是酉(可逆)的,因为它是自逆的。 
查询模型的意义在于,它为算法的步骤(门)数量提供了下限。每个查询至少是算法中的一步,如果用查询都无法高效完成,那么用门操作更不可能高效完成。此外,查询模型还可用于证明相对于预言机的快速量子算法。我们可以让量子计算机和经典计算机访问同一个预言机,比较它们的性能,从而证明相对于预言机的计算优势。例如 Deutsch 算法和 Berstein - Vazirani 算法就具有可证明的相对加速。
如果能找到一种方法,以输入寄存器大小的多项式规模的门来实例化预言机,就可以实现“真正”(非相对)的量子加速,Shor 算法在量子因式分解中就是如此。Shor
 
                       
                             
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   34
					34
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            