模拟与高精度+二分查找第一次周赛

7-1 Lily

百合花(Lily)是一种美丽的花。她通常一年只开一次花,所以如果你看到百合花盛开,它会非常珍贵。然而,她对猫有剧毒,所以你必须注意让好奇的猫远离可爱的百合花。

你有n个网格的土壤土地排成一行,从1到n,其中一些是百合花。我们不想伤害百合,也不想伤害猫。你可以在网格上放一些猫粮,但对于任何有猫粮的网格i,在区域[i−1,i+1]不得含有百合花。你喜欢猫和百合,所以你想最大限度地增加有猫粮的格子。

设计满足上述要求的计划。

输入格式:

有一个整数n(1≤n≤1000)表示网格的数量。

第二行包含仅由“L”和“.”组成的字符串R,表示有和没有百合花的格子。

输出格式:

输出包含一行,字符串R′仅由“L”、“”组成和“C”,其中“C”表示在满足上述要求的同时分配给R中空网格的猫粮。

输入样例:

在这里给出一组输入。例如:

5
..L..

输出样例:

在这里给出相应的输出。例如:

C.L.C
#include<bits/stdc++.h>
using namespace std;
int main(){
    int n,num=0,sum=0,flag=0;cin>>n;
    string r;cin>>r;
    for(int i=0;i<n;i++){
        if(r[i]=='.')r[i]='C';
        else if(r[i]=='L'&&i>0){
            if(r[i-1]!='L')
            r[i-1]='.';
            if(i<n-1&&r[i+1]!='L')
            i++;
        }
    }
    for(int i=0;i<n;i++)cout<<r[i];
    return 0;
}

 

7-2 a * b

给出两个不超过1000位的十六进制数a,b。
求a∗b的值

输入格式:

输入共两行,两个十六进制的数

输出格式:

输出一行,表示a∗b

输入样例:

在这里给出一组输入。例如:

1BF52
1D4B42

输出样例:

在这里给出相应的输出。例如:

332FCA5924
#include<bits/stdc++.h>
using namespace std;
int a[1003], b[1003], c[1000003];
string s1, s2;
int changetonum(char ch) {
    switch (ch) {
    case 'A':
        return 10;
    case 'B':
        return 11;
    case 'C':
        return 12;
    case 'D':
        return 13;
    case 'E':
        return 14;
    case 'F':
        return 15;
    default:
        return ch - '0';
    }
}
char changetochar(int num) {
    switch (num) {
    case 10:
        return 'A';
    case 11:
        return 'B';
    case 12:
        return 'C';
    case 13:
        return 'D';
    case 14:
        return 'E';
    case 15:
        return 'F';
    default:
        return num + '0';
    }
}
int main()
{
    cin >> s1 >> s2;
    int lena = s1.length();
    int lenb = s2.length();
    for (int i = 1; i <= lena; i++) {
        a[i] = changetonum(s1[lena - i]);
    }
    for (int i = 1; i <= lenb; i++)
        b[i] = changetonum(s2[lenb - i]);
    for (int i = 1; i <= lena; i++) {
        int t = 0;
        for (int j = 1; j <= lenb; j++) {
            c[i + j - 1] = a[i] * b[j] + t + c[i + j - 1];
            t = c[i + j - 1] / 16;
            c[i + j - 1] %= 16;
        }
        c[i + lenb] += t;
    }
    int lenc = lena + lenb;
    while (c[lenc] == 0 && lenc > 0)lenc--;
    for (int i = lenc; i >= 1; i--)cout << changetochar(c[i]);
    return 0;
}

7-3 山头狙击战

题目描述

小明为了掩护大部队,单枪匹马同敌人周旋,后来被敌人包围在某山头……等等,为什么怎么听怎么像狼牙山五壮士!不过不用着急,这次小明携带了足够的弹药,完全可以将涌上来的敌人一个一个干掉。小明是个神枪手,只要他的枪膛中有子弹,他就能将在他射程m(用从敌人位置到山头的直线距离算)以内的一个敌人瞬间射杀。但如果在射程内没有敌人,出于节约子弹考虑和面子问题,小明会等待敌人靠近然后射击。
正当小明为自己的强大而自我膨胀时,他忽然发现了一个致命的失误:他携带的枪是单发枪,每射出一发子弹都必须花k秒钟的时间装子弹。而凶残的敌人才不会花时间等你换子弹呢。他们始终在以1m/s的速度接近山头。而如果在一个敌人到达山头时小明无法将他击毙,那么我们可怜的小明就将牺牲在敌人的刺刀下。现在小明用心灵感应向你发出求助:要保住自己的性命并且歼灭所有敌人,小明最多只能用多少时间给枪装上一发子弹?
说明:假设一开始小明的枪中就有一发子弹,并且一旦确定一个装弹时间,小明始终会用这个时间完成子弹的装卸。希望你能帮助小明脱离险境。

输入格式

每组输入数据,第一行有两个整数n和m,(2≤n≤100,000; 1≤m≤10,000,000)n代表敌人个数,m代表小明的射程。
接下来有n行,每行一个整数mi,(1≤mi≤10,000,000),代表每个敌人一开始相对山头的距离(单位为米)。

输出格式

每组输出数据仅有一个整数,代表小明的换弹时间(单位为秒)。

样例输入

6 100
236
120
120
120
120
120

样例输出

25

 

#include<bits/stdc++.h>
using namespace std;
int mi[100003] = { 0 };
int mile[100003];
int n, m, ans = 0;
bool check(int mid) {
    for (int i = 1; i <= n; i++)mile[i] = mi[i];
    int wait = 0;
    for (int i = 1; i <= n; i++) {        
        mile[i] -= wait;
        int t = mile[i];
        while (t > m) {
            wait++;
            t--;
        }
        if (mile[i] < 0)return false;
        else {
            wait += mid;
        }
    }
    return true;
}
int main() {    
    cin >> n >> m;
    for (int i = 1; i <= n; i++)cin >> mi[i];
    sort(mi + 1, mi + n+1);
    int left = 1, right = 1000000;
    while (left <= right) {
        int mid = (left + right) / 2;
        if (check(mid)) { 
            left = mid + 1; 
            ans = max(ans, mid);
        }
        else right = mid - 1;        
    }
    cout << ans;
    return 0;
}

 

7-4 Reversing Linked List

Given a constant K and a singly linked list L, you are supposed to reverse the links of every K elements on L. For example, given L being 1→2→3→4→5→6, if K=3, then you must output 3→2→1→6→5→4; if K=4, you must output 4→3→2→1→5→6.

Input Specification:

Each input file contains one test case. For each case, the first line contains the address of the first node, a positive N (≤105) which is the total number of nodes, and a positive K (≤N) which is the length of the sublist to be reversed. The address of a node is a 5-digit nonnegative integer, and NULL is represented by -1.

Then N lines follow, each describes a node in the format:

Address Data Next

where Address is the position of the node, Data is an integer, and Next is the position of the next node.

Output Specification:

For each case, output the resulting ordered linked list. Each node occupies a line, and is printed in the same format as in the input.

Sample Input:

00100 6 4
00000 4 99999
00100 1 12309
68237 6 -1
33218 3 00000
99999 5 68237
12309 2 33218

Sample Output:

00000 4 33218
33218 3 12309
12309 2 00100
00100 1 99999
99999 5 68237
68237 6 -1
#include<bits/stdc++.h>
using namespace std;
int main() {
    int node, n,k, address;
    cin >> node >> n >> k;
    int data[100005], next[100005], valid[100005];
    for (int i = 0; i < n; i++) {
        cin >> address;
        cin >> data[address] >> next[address];
    }
    int ans = 0;//不一定所有的输入的结点都是有用的,加个计数器
    while (node != -1) {
        valid[ans++] = node;
        node = next[node];
    }
    for (int i = 0; i < (ans - ans % k); i += k)
        reverse(begin(valid) + i, begin(valid) + i + k);
    for (int i = 0; i < ans - 1; i++)
        printf("%05d %d %05d\n", valid[i], data[valid[i]], valid[i + 1]);
    printf("%05d %d -1", valid[ans - 1], data[valid[ans - 1]]);
    return 0;
}

7-5 一元三次方程

给定一个形如ax3+bx2+cx+d=0的一元三次方程。

已知该方程有三个不同的实数根(根与根之差的绝对值≥10−6),且根范围均在[p,q]之间,你需要解出这个方程的三个根。

输入格式:

第一行一个整数T(1≤T≤1000),表示有T组数据

接下来T行,每行6个实数,分别表示a,b,c,d,p,q

数据保证:−102≤p,q≤102,且对于∀x∈[p,q],−106≤f(x)≤106

输出格式:

输出三个实数,表示方程的三个解。

你的答案可以以任意顺序输出。

一个答案被认为是正确的,当且仅当其与标准答案的绝对误差不超过10−6

输入样例:

在这里给出一组输入。例如:

1
1.000000 -5.000000 -4.000000 20.000000 -10.000000 10.000000

输出样例:

在这里给出相应的输出。例如:

-2.000000 2.000000 5.000000

提示1:

样例所给方程的图像如下:

提示2:

对于方程:ax2+bx+c=0(Δ=b2−4ac≥0),它的两个根分别为:x1​=2a−b−Δ​​,x2​=2a−b+Δ​​

#include<bits/stdc++.h>
using namespace std;
double a, b, c, d, p, q;
double eps = 1e-7;
double f(double x)
{
    return a * x * x * x + b * x * x + c * x + d;
}
int main()
{
    double left, right, mid, x1, x2;
    int i, num;
    cin >> num;
    while (num--) {
        cin >> a >> b >> c >> d >> p >> q;
        int ans = 0;
        for (i = p; i <= q; i++)
        {
            left = i;
            right = i + 1;
            x1 = f(left);
            x2 = f(right);
            if (!x1)
            {
                printf("%.2lf ", left);
                ans++;
            }       //判断左端点,是零点直接输出。

                            //不能判断右端点,会重复。
            if (x1 * x2 < 0)                             //区间内有根。
            {
                while (right - left >= eps)                     //二分控制精度。
                {
                    mid = (left + right) / 2;  //middle
                    if (f(mid) * f(right) <= 0)
                        left = mid;
                    else
                        right = mid;   //计算中点处函数值缩小区间。
                }
                printf("%.6lf ", right);
                //输出右端点。
                ans++;
            }
            if (ans == 3)
                break;
        }
        cout << endl;
    }
    return 0;
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值