vim 匹配单词及创建递增数字

本文介绍Vim编辑器中正则表达式的使用技巧,包括如何精确匹配单词、忽略大小写设置,以及通过Vim命令实现特定功能,如输出1到10的序列。适合希望提高Vim编辑效率的开发者阅读。
<think>首先,用户的问题是:"我想了解在Hadoop环境中使用vim命令创建单词本的方法 请问在Hadoop环境下使用vim命令创建单词本的方法"。这翻译成:"I want to learn about using the vim command to create a wordbook in a Hadoop environment. How do I use the vim command to create a wordbook in a Hadoop environment?" 用户提供了站内引用: - 引用[1]描述了在Hadoop脚本中使用vim来编辑脚本文件(如run.sh),然后使用Hadoop Streaming来处理文件(The_Man_of_Property.txt)。 - 引用[2]是关于Hadoop常用的命令,如hadoop archive和distcp。 从引用[1]中,关键点是: - 使用vim创建脚本(如run.sh),其中设置Hadoop Streaming作业。 - 脚本指定了mapper和reducer(Python脚本),用于单词计数(类似于单词本)。 - OUTPUT_PATH是输出路径,比如/output/wc。 用户说"创建单词本",结合上下文,可能指的是创建一个脚本或方法来处理文本文件并生成一个单词计数列表(类似单词本)。 在Hadoop环境中,vim是一个文本编辑器,用于在本地文件系统上创建和编辑文件。它不直接在HDFS上操作;你需要先在本地创建文件,然后上传到HDFS进行处理。 所以,步骤应该是: 1. 使用vim在本地创建脚本文件(如map.py和red.py)。 2. 然后使用hadoop命令或脚本提交作业。 从引用[1]: - 用户使用vim run.sh创建了一个脚本。 - 在脚本中,调用Hadoop Streaming命令,使用mapper和reducer脚本。 - Mapper和reducer是Python脚本:map.py和red.py,它们必须是本地的文件。 因此,创建"单词本"可能意味着创建这些脚本或设置一个单词计数作业。 核心步骤: - 使用vim创建mapper脚本(map.py),用于分割文本为单词。 - 使用vim创建reducer脚本(red.py),用于聚合单词计数。 - 使用vim创建运行脚本(run.sh),配置Hadoop Streaming。 - 然后执行run.sh来运行作业。 输出将是单词计数文件。 现在,系统指令: - 所有行内数学用$...$(这里可能不涉及数学)。 - 独立公式用$$...$$(可能不需要)。 - LaTeX语法正确(在Markdown中)。 - 使用中文回答。 - 生成相关问题。 回答结构: - 结构化清晰,逐步解释。 - 参考用户上一次的问题:用户之前问了关于Hadoop命令的问题,但这是第一个问题(根据上下文)。 - 在回答中,引用末尾添加引用标识[^1]等。 用户上一次的问题似乎是关于Hadoop命令的,但在这个聊天中,这是直接的问题。 回答步骤: 1. 解释整体过程:在Hadoop环境中创建单词本通常涉及编写MapReduce作业来处理文本文件。 2. 详细步骤: - 使用vim创建必要的脚本(map.py, red.py, run.sh)。 - 描述每个脚本的内容。 - 解释如何运行作业。 3. 基于引用[1]提供示例。 4. 结尾生成相关问题。 最终输出将是一个单词计数文件。 生成相关问题: - 例如:如何优化单词计数MapReduce作业?如何处理大文件?等。 完整回应: - 用中文。 - 结构清晰。 </think>### 在Hadoop环境中使用vim命令创建单词本的方法 在Hadoop环境下,使用vim命令创建"单词本"(通常指文本文件的单词计数列表)通常涉及以下步骤:vim是一个本地文本编辑器,用于编写MapReduce作业所需的脚本文件(如Shell脚本、Python脚本),然后通过Hadoop Streaming提交作业。核心思路是:先在本地文件系统使用vim编辑脚本,再上传或直接运行作业来处理HDFS中的文本文件,最终生成单词计数输出(即单词本)。以下是详细步骤,基于您的引用[^1](涉及Hadoop Streaming示例)和最佳实践[^2]。 #### 步骤详解(以单词计数为例) 1. **使用vim创建Mapper和Reducer脚本** 这些脚本定义了如何处理文本数据:Mapper负责分割单词,Reducer负责聚合计数。在本地终端执行以下命令: - **创建Mapper脚本(map.py)**: ```bash vim map.py ``` 在vim编辑器中输入以下Python代码(用于分割文本为单词): ```python #!/usr/bin/env python import sys for line in sys.stdin: words = line.strip().split() for word in words: print(f"{word}\t1") # 输出单词和初始计数1 ``` 保存退出(`:wq`)。 - *说明*:此脚本读取输入流(如HDFS文件),将每行拆分为单词,并输出`<单词>\t1`格式。 - **创建Reducer脚本(red.py)**: ```bash vim red.py ``` 输入以下代码(用于汇总单词计数): ```python #!/usr/bin/env python import sys current_word = None current_count = 0 for line in sys.stdin: word, count = line.strip().split('\t') count = int(count) if word == current_word: current_count += count else: if current_word: print(f"{current_word}\t{current_count}") # 输出单词和总计数 current_word = word current_count = count if current_word: print(f"{current_word}\t{current_count}") ``` 保存退出(`:wq`)。 - *说明*:此脚本接收Mapper输出,累加相同单词的计数,生成最终`<单词>\t计数`格式。 2. **使用vim创建运行脚本(run.sh)** 这是一个Shell脚本,用于配置和提交Hadoop Streaming作业。编辑脚本: ```bash vim run.sh ``` 输入以下内容(参考引用[^1]的配置): ```bash #!/bin/bash HADOOP_CMD="/usr/local/src/hadoop-2.6.1/bin/hadoop" # Hadoop命令路径 STREAM_JAR_PATH="/usr/local/src/hadoop-2.6.1/share/hadoop/tools/lib/hadoop-streaming-2.6.1.jar" # Streaming JAR路径 INPUT_FILE_PATH="/data/The_Man_of_Property.txt" # HDFS输入文件路径(替换为您的文本文件) OUTPUT_PATH="/output/wc" # HDFS输出路径(单词本存储位置) # 删除旧输出(避免冲突) $HADOOP_CMD fs -rm -r -skipTrash $OUTPUT_PATH # [^1] # 提交Streaming作业 $HADOOP_CMD jar $STREAM_JAR_PATH \ -input $INPUT_FILE_PATH \ -output $OUTPUT_PATH \ -mapper "python map.py" \ -reducer "python red.py" \ -file ./map.py \ # 分发本地脚本到集群 -file ./red.py ``` 保存退出(`:wq`),并赋予执行权限: ```bash chmod +x run.sh ``` - *说明*:此脚本指定输入文件(如`/data/The_Man_of_Property.txt`)、输出目录(`/output/wc`),并通过`-file`参数将本地脚本上传到HDFS。输出路径`OUTPUT_PATH`是单词本的最终位置[^1]。 3. **运行脚本并生成单词本** - 确保输入文本文件已在HDFS中(如使用`hadoop fs -put`上传)。 - 执行脚本: ```bash ./run.sh ``` - 作业完成后,单词本(单词计数文件)存储在HDFS的`/output/wc`目录下。查看结果: ```bash hadoop fs -cat /output/wc/part-* ``` - *输出示例*:每个单词及其出现次数(如`apple\t10`)。 #### 注意事项 - **vim的使用场景**:vim仅用于本地编辑脚本文件,不直接操作HDFS文件。编辑后,脚本通过Hadoop Streaming分发到集群。 - **依赖环境**:确认Python环境可用(Hadoop节点需安装Python),且路径正确(如引用[^1]中的`HADOOP_CMD`)。 - **性能优化**:对于大文件,确保输入文件位于HDFS(如引用[^2]所述,使用`hadoop archive`管理文件)。 - **错误处理**:如果作业失败,检查YARN日志(`yarn logs -applicationId <app_id>`)。 通过上述步骤,您可在Hadoop环境中高效创建单词本。输出文件即为单词频率列表,适用于文本分析[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值